
MockData: load generation based

on read replay with integrity check

for Xcache

10.12.19 MockData 1

David Smith (david.smith@cern.ch) on behalf of IT-DI-LCG, UP team.

10 Dec 2019, DOMA Access meeting

mailto:david.smith@cern.ch

Overview

• What is MockData/The Pieces/MockData & Xcache

• The file-list

• About the files

• Assigning files: Scaled interval or predictable rate

• Load-generator: transferring files

• An example: log messages

• Network traffic plots from test runs

• Other transfer options

• If you would like to try MockData

• To do

10.12.19 MockData 2

What is MockData

• Has a server and multi-client architecture

• A server (coordinator) sends configuration
information and a list of file names

• clients (load-generator) make XRootD transfers
of files
• Number of clients (and therefore number of hosts)

can be raised to provide useful load level

• An XRootD plugin allows an XRootD server
(data-source) to present an unlimited number of
files, each with individual, random-looking but
predictable content without needing to store the
files

10.12.19 MockData 3

The pieces

• MockData: coordinator and load-generator

• (data-source with plugin not shown)

10.12.19 MockData 4

LG

LG

LG

Coordinator

Configuration

File-list (e.g.

from access

logs)

MockData and Xcache

10.12.19 MockData 5

The Cache layer (C) is an instance of the caching software to be evaluated. This should be

initially installed on a reference node type that corresponds to a typical storage node.

The Data Source is a modified Storage Element. When a file is opened and read the DS

sends an arbitrary pattern of data as a response. This allows with very few nodes, without

any storage to emulate the data delivery capability of a large storage system without storing

the data. The integrated bandwidth of the DSs has to exceed the bandwidth of the Cache.

The load on the Cache node will be monitored, either by prmon or by other suitable tools.

To measure the capability of the Cache the active LGs will be increased until one of the

resources used by the Cache is saturated.

Impact of the number of discs and type of discs as well as different network connectivity can

be explored. Also different versions and cache implementations can compared in a

quantitative way.

Open questions and further improvements:

The description currently plans to replay a file access by reproducing the average bandwidth

of a workflow for the corresponding type of file (AOD etc). However this ignores non-uniform

access (in time or offset). Indeed Root I/O doesn’t read sequentially and due to the block

based approach (and background reading) of the cache the access pattern might be

relevant. Obtaining the access pattern may need to be prepared in a separate step, as logs

(such as those obtained from rucio file popularity) will not contain sufficient detail to learn this

pattern.

There is also the need to verify correctness, for complete files this is easy, for the blocks this

is more complex. There are hints that sometimes data gets somewhere on the path

corrupted. LMU has seen some random crashes that are attributed to this.

The file-list

• File list looks like:

time filename filesize

#

1527793220 DAOD_HIGG2D1.14249006._000128.pool.root.1 4140091969

1527793250 DAOD_HIGG2D1.14249006._000125.pool.root.1 4787931809

1527793258 DAOD_HIGG2D1.14249006._000135.pool.root.1 3977269205

…

• Must be time ordered

• For testing have been using a list taken from
ATLAS Rucio trace files from a Tier-2 over 1
month

• 1.43M files, 1.50PB, 0.84M unique files

10.12.19 MockData 6

About the files

• Files can be sent to the Xcache from a server
using a MockData plugin which generates
content based on filename & size. This allows:
• Sending many different files to the Xcache without

having to store all files

• The load-generator can verify the chunks of the files
received by regenerating them locally.

• The plugin at the server can introduce a configurable
delay in fulfilling the requests, thereby approximating
a latency between server and cache

• Actually the plugin is optional: A regular storage
could be used, if the files exist there. But the
integrity check will not be done.

10.12.19 MockData 7

Assigning files: Scaled interval
• The coordinator assigns out files in turn

• Can reproduce the time interval between file start of each
file transfer, with an optional scaling factor. e.g.

mockdata-coordinator –f 1.0

1527793220 DAOD_HIGG2D1.14249006._000128.pool.root.1 4140091969

1527793250 DAOD_HIGG2D1.14249006._000125.pool.root.1 4787931809

…

• Starts the first transfer, then 30 seconds later starts the
second, or with a factor of 2.0 would start it 15 seconds
later.. The test finishes when the file-list is finished

10.12.19 MockData 8

Assigning files: Predictable Rate

• Alternatively targets an average transfer
rate:

mockdata-coordinator –f 100,500,5000

• Means start assigning files so that the initial
rate should be 100MB/s, rising to 500MB/s
over 5000s, after which the test finishes.

• This essentially ignores the “time” parameter
in the file-list, but preserves the order

10.12.19 MockData 9

Load-generator: transferring files

• Once assigned a file, the load-generator

transfers it by making read requests with

delays between them to match the desired

duration.

• The overall duration of the transfer is a part

of the configuration and can either be an

absolute time or a depend on the filesize

(i.e. a rate)

10.12.19 MockData 10

Load-generator: transferring files

Try to target configured overall transfer time by adjusting sleeping time so that the sum of sleep+request waiting =

desired duration

A summarizing quantity called the transfer efficiency is also reported:

transfer efficiency = (desired duration)/(desired duration + sum[request wait]) * 100%

The actual duration of the transfer can exceed the desired duration (overrun) if the reply waiting time is too large

10.12.19 MockData 11

Reply

Send Req for

blocksize bytes

Reply from

cahe

Load-generator sleeping

Load-generator waiting for an XRootD reply

Time

An example: log messages
• One file in the file-list

1567502522 myfile1.txt 1024

• And run the coordinator:

mockdata-coordinator –f 1.0

The command will write log lines to stdout:

Nov 29 11:47:24.370539 pmpe01 [INFO] Starting replay, reference time 1575024459

Nov 29 11:47:24.370640 pmpe01 [INFO] Setting the startpoint timestamp from the filelist to 1567502522

The above means the first file will start to transfer at 1575024459 (a unix timestamp in about 15 seconds time), and it originally had a
timestamp of 1567502522

Assignment made and load-generator commits to start:

Nov 29 11:47:34.730485 pmpe01 [INFO] Assigning id=0 originalStartTime=1567502522 filename=myfile1.txt intended_duration=0.000102
allowed_overrun=1.000000/600.000000 approx_start=5.000000 lgidstr=pmpe01.cern.ch#31790 dutycycle=0.000000 prev_nassigned_lg=0
nassigned_total=1 assignRateFiveMinAvgMBs=0.000000

Load-generator reported transfer finished:

Nov 29 11:47:39.375672 pmpe01 [INFO] Received success for myfile1.txt id=0 lgidstr=pmpe01.cern.ch#31790 result_rc=0
result_summary=Final stats for fid=0 fileUrl=xroot://caaaa000@pmpe06.cern.ch//mockdata/myfile1.txt_1024_0 intended_duration=0.000102
nbissued=1024 nread/vecread_bytes=1024/0 nread/vecread_calls=1/0 duration=0.004259 accessMap=|********************| seekPdfFit=0
nseekbytes=0 nseeks=0 seekedFracPerSeek=0 seeksPerMB=0.000000 Vnchunks/Vnread=0 fsize=1024
lastServer=caaaa000@pmpe15.cern.ch:1095 xrdReqCallbackTime=0.000353 xrdReqOverlapFactor=1.000000 deliveryEff=22.493284
globalRateEstimateMBps=0.000068

10.12.19 MockData 12

An example (log line focus 1)
Nov 29 11:47:34.730485 pmpe01 [INFO] Assigning id=0
originalStartTime=1567502522 filename=myfile1.txt
intended_duration=0.000102
allowed_overrun=1.000000/600.000000
approx_start=5.000000 lgidstr=pmpe01.cern.ch#31790
dutycycle=0.000000 prev_nassigned_lg=0 nassigned_total=1
assignRateFiveMinAvgMBs=0.000000

The first file (“myfile1.txt”) has been assigned to the load-
generator running at pmpe01 pid31790. The load-generator
will start it in about 5 seconds, and it should complete in about
0.0001s (it’s a very small file!) The file must be received within
an overrun time which is 1.00 * intended duration or 600s,
whichever is larger. Overrunning transfers will be stopped and
considered failed.

10.12.19 MockData 13

An example (log line focus 2)
Nov 29 11:47:39.375672 pmpe01 [INFO] Received success for
myfile1.txt id=0 lgidstr=pmpe01.cern.ch#31790 result_rc=0
result_summary=Final stats for fid=0
fileUrl=xroot://caaaa000@pmpe06.cern.ch//mockdata/myfile1.txt_1
024_0 intended_duration=0.000102 nbissued=1024
nread/vecread_bytes=1024/0 nread/vecread_calls=1/0
duration=0.004259 accessMap=|********************| seekPdfFit=0
nseekbytes=0 nseeks=0 seekedFracPerSeek=0
seeksPerMB=0.000000 Vnchunks/Vnread=0 fsize=1024
lastServer=caaaa000@pmpe15.cern.ch:1095
xrdReqCallbackTime=0.000353 xrdReqOverlapFactor=1.000000
deliveryEff=22.493284 globalRateEstimateMBps=0.000068

The file myfile1.txt completes transfer ok. It was served by the
xcache node at pmpe15:1095.

10.12.19 MockData 14

Example network traffic plot

• This plot shows (green) incoming traffic to load-generators
and (yellow) going traffic from XRootD server

• This was a scaled-replay mode: The peaks are mostly a
reflection of the original variability of requests at the
original site (at 10 to 20% scaled rate)

10.12.19 MockData 15

Example network traffic plot 2

10.12.19 MockData 16

This was a rate-target mode: The traffic rate profile is
expected to approach a linear slope. The above contains 3
separate runs.

• Linearity visible in the low traffic level portions

• However deviation is soon evident, I suspect to be limits at this
cache instance during this test. (For further investigation)

Other transfer options
• There are a number of aspects of the transfers which can be

controlled. They are written in file & access profiles given to the
coordinator and can be matched on a per file basis using a regular
expression against the filename.

• These include:
• The delay to introduce at the XRootD server (10ms in current tests)

• Fraction of the file to read: (1.0 currently; may be >1.0)

• Intended duration (absolute or a rate: e.g. 10MB/s)

• Allowed overrun time (fraction or absolute)

• Number of IO requests to be outstanding at any time

• Number of file requests to XrdCl login (e.g. stream) and number of XrdCl
substreams per stream

• Fraction of reads which should be VectorRead and number of chunks for each
vector read.

• Binned probability distributions describing the seek distance between each
request (as a fraction of the file length: -1.0 to +1.0) and the chunk read size
(between arbitrary low/high).

• Tests so far used a sequential access (0 seek) and a distribution of small chunk
sizes, average ~25KB.

10.12.19 MockData 17

If you would like to try:
• The repository is readable if you have a cern account:

• https://gitlab.cern.ch/dhsmith/mockdata

• This includes a README.md (rendered at the gitlab page
above) with a quick-start guide.

• Build for centos7 in RPMs is available within the CI/DI link
(look for tag v1.0.0-1/build artifacts) or here

• http://cern.ch/~dhsmith/MockData/v1.0.0-1/

• Sample file-list may be available (contact me).

• Package includes tool to request random files

10.12.19 MockData 18

https://gitlab.cern.ch/dhsmith/mockdata
http://cern.ch/~dhsmith/MockData/v1.0.0-1/

To Do

• I will aim to fix any bugs and add useful
features

• The quick-start guide should allow you to get
going, but more detailed documentation of
all the options and operation may be needed
for your study

• Please contact me if you have problems or
questions: I’ll setup a bug or feature tracker
if there’s sufficient volume of requests

david.smith@cern.ch

10.12.19 MockData 19

