

LHC Injectors Upgrade

LIU beam performance ramping up: SPS ions

T. Argyropoulos, Montreux, 20-22 January 2020

With input from: R. Alemany, P. Baudrenghien, T. Bohl, G. Hagmann, V. Kain, I. Karpov, A. Lasheen, K. Li, G. Papotti, D. Quartullo, M. Schwarz, E. Shaposhnikova, A. Spierer

Introduction

- HL-LHC requirement to double the peak luminosity at the Pb-ion run after LS2
 - Increase the number of bunches in the LHC
- LIU baseline to achieve that is by performing slip-stacking (slip-interleaving) in the SPS
 - Two beams of different momenta slip azimuthally, relative to each other, in the same beam pipe.
 - The beams can be then interleaved reducing the bunch spacing by half and thus doubling the number of bunches

Slip-stacking procedure in SPS

- Two SPS batches of 24 bunches spaced by 100 ns are going to be interleaved at a constant energy plateau
 - Resulting to a single batch of 48 bunches with 50 ns bunch spacing

- The two batches are controlled by two independent
 RF systems with small frequency difference between them (within the bandwidth of the main 200 MHz RF system)
- II.-III. The batches slip towards each other, following the designed RF programs (frequency, voltage).
- IV. When the two beams are in correct position the full beam is recaptured with a much higher RF voltage at the average RF frequency.

Energy plateau selection

- Flat bottom: relatively strong transverse space charge and intra-beam scattering effects, simplified scaling laws show that all the relevant to slip-stacking parameters favour higher energies.
- Flat top: bunches more prone to longitudinal instabilities, un-captured beam generated during the process, would be transferred to the LHC
- Slip-stacking at intermediate energy plateau at 300 ZGeV/c → around 1 s needs to be added to the cycle.

- ✓ Well above $γ_{tr}$ → favourable for slip-stacking.
- ✓ No intra-beam scattering and space-charge issues as in the long (~40 s) injection plateau.
- ✓ Better longitudinal beam stability compared to flat-top.
- Uncaptured beam will not be transferred to the LHC.

• RF perturbation

- The group of cavities that is not synchronised with the batch will perturb its motion.
- The perturbation is described by the slip-stacking parameter

$$\alpha \stackrel{\text{\tiny def}}{=} \frac{\Delta f_{RF}}{f_{s0}} = 2 \frac{\Delta E}{H_B}$$

 Δf_{RF} : difference in RF frequency f_{s0} : zero amplitude synchrotron frequency ΔE : Energy difference H_B : half bucket height

 α =4 lowest stability limit \rightarrow for $\alpha \leq 4$ motion becomes chaotic!!

Two implications during slip-stacking

- Start: α =0 → RF amplitude modulation necessary to separate the batches (one group should be active when the corresponding batch passes by) → minimum acceptable initial distance between the batches based on the cavities filling time.
- End: beams should remain separated in energy at the moment of recapture → high RF voltage is needed at the end to capture all

The particles of the separated beams \rightarrow large emittance blow-up.

• RF program calculations

- At the start of slip-stacking the RF cavities will split into two groups and each group will be synchronized with one of the two batches
- Each group should follow different RF frequency (momentum) and voltage and programs

RF program calculations

- At the start of slip-stacking the RF cavities will split into two groups and each group will be synchronized with one of the two batches
- Each group should follow different RF frequency (momentum) and voltage and programs.
- These programs are calculated assuming constant longitudinal emittance ε_l and filling factor in energy q_E and also treating independently the two RF systems
- In the future they will be calculated through a high level application and will be given as an input to the hardware.
 - Calculation of programs using required machine and beam parameters
 - ✓ Send values to the hardware
 - ✓ Very fast to run (less than a minute)
 - Easy to change parameters and recalculate during the beam set-up

- Beam parameters
 - Significant bunch to bunch variation in intensity and emittance along the batch generated during the long injection plateau (~40 s).
 - Voltage programs calculated for the largest bunch to avoid losses during slip-stacking.
 - The RF noise reduction is expected with the new LLRF which will decrease the blow-up of the beam and thus will reduce the spread

• Independent LLRF controls for each group of RF cavities after LS2

- Design of the slip-stacking process was based on realistic macro-particle simulations using the BLonD code, including
 - Measured beam parameters (longitudinal bunch distribution, emittance, intensity).
 - The detailed longitudinal impedance model.

• Large number of simulations to optimize the process

- Both for Q20 and Q26 optics.
- Simulations of the full beam started at 300 ZGeV/c taking into account the measured beam parameters at this moment of the cycle.
- Scanning parameters: α , q_e , V_{rf}
- Minimization of:
 - Total losses *L*_{tot}
 - $^{\scriptscriptstyle -}$ Long. emittance ε_l (fit the LHC 400 MHz RF bucket)
- At flat top ($V_{rf} = 15MV$):
 - Adiabatic bunch compression
 - Bunch rotation

- No acceptable solution (in bunch length) for Q20 optics with adiabatic bunch rotation
 - bunch rotation is needed in order to achieve sufficiently short bunches at extraction
- Q26 optics was selected for slip-stacking
 - provides more margin to the final beam parameters.

T. Argyropoulos

Hollow bunch generation after momentum slip-stacking

- At the end of slip-stacking manipulation $\alpha >$ 4 to avoid losses.
- Bunches strongly un matched to the RF bucket at the moment of recapture.

LIU Workshop, 20-22 January 2020

T. Argyropoulos

Hollow bunch generation after momentum slip-stacking

- At the end of slip-stacking manipulation $\alpha >$ 4 to avoid losses.
- Bunches strongly un matched to the RF bucket at the moment of recapture.
- After filamentation a hollow bunch will be generated in the longitudinal phase space
- This distribution is preserved until the end of the cycle

• Loss of Landau damping is observed for the shortest bunches in the batch when intensity effects are included in simulations

• Dipole oscillations are not damped until the end of the cycle

- Loss of Landau damping is observed for the shortest bunches in the batch when intensity effects are included in simulations
 - Dipole oscillations are not damped until the end of the cycle
 - High density island in phase-space that keeps oscillating around the bucket centre

- Obvious solution to increase the Loss of Landau damping threshold is to use the 800 MHz RF system
 - Effectively no damping when 800 MHz is switched on only at flat top

• Obvious solution to increase the Loss of Landau damping threshold is to use the 800 MHz RF system

- Effectively no damping when 800 MHz is switched on only at flat top
- We need to use it immediately at recapture and keep it on for the rest of the cycle

16

BSM

BLM

Longitudinal beam stability of ion beams

- Series of relevant to slip-stacking measurements was carried out in end of 2018
 - Check longitudinal beam quality
- A new slip-stacking short MD cycle with the addition of 1 s energy plateau at 300 ZGeV/c.

Beam measurements in 2018

Beam stability and reproducibility key component for a successful implementation of slip-stacking.

- Beam instabilities after transition crossing observed in measurements
- Stabilised by a deliberate degradation transition crossing
 - Strong longitudinal emittance blow-up

Optimisation of transition crossing shifted instabilities later in the cycle

Beam measurements in 2018

 □ Enhances bunch-by-bunch variation in the batch
 □ Uncontrolled blow-up → non reproducibility from cycle to cycle

LIU Workshop, 20-22 January 2020

Important to stabilise the beam before slip-stacking can be applied

Macro-particle simulations

Macro-particle simulations

Time [s]

After LS2 impedance reduction

Slightly smaller beam perturbation after transition crossing is expected from simulations in the future, after the SPS impedance reduction

Bunch is still quite unstable even at low energy (1.8x10¹⁰ protons/b).

□ Bunch parameters are still strongly depended on any jitter during the phase-jump at transition crossing → non reproducible beam parameters at extraction

Double RF operation

Beam commissioning

• One week is preliminary reserved in September 2021 for the slip-stacking commissioning

- SPS ions FFA will be commissioned at the beginning of the summer.
- Possibility to check the slip-stacking hardware already in summer (RF programs generation, grouping and controlling independently the RF cavities, etc.), even without beam.
- Possibility to check the slip-stacking manipulation with proton pilot bunches in MDs (requires generation of new MD cycle)
- Everything depends on the availability of the LLRF experts and how the setting up of the proton beams is evolving.

T. Argyropoulos

Beam commissioning steps

- Commissioning the high level tools for generating the frequency and voltage programs and sending them to hardware
 - Could be checked earlier without beam
- Commissioning with a short magnetic cycle
 - Only up to two injections needed. Very similar to the one used in 2018 MDs
- Start with one bunch to check and improve the longitudinal beam quality through the cycle
 - Reproducible bunch parameters in terms of emittances at the slip-stacking plateau
 - Use of the 800 MHz RF system will be needed after FFA. Will be hopefully checked earlier in summer during the SPS ions cycle setting up.
- One (or two) bunches to check the slip-stacking procedure and final beam parameters
 - RF voltage amplitude modulation
 - Beam emittance and losses at extraction
 - Optimise the designed RF programs during slip-stacking and also later when ramping up to top energy (capture voltage, bucket filling factor etc.)
 - Need of quick macro-particle simulations at the same time

Increase the number of batches gradually

- Long, nominal cycle is needed \rightarrow dedicated supercycle
- Adapt the designed RF programs for the new beam parameters.

Summary and conclusions

• Man power during the week of setting up slip-stacking

- It's possible that we need to work also during nights
- Simulations might be needed at the same time to understand and overcome potential difficalties

RF perturbation during slip-stacking

 $\alpha = 0$ in the beginning \rightarrow RF amplitude modulation is necessary to separate the batches \rightarrow minimum d_b (T_B in time) based on the filling time of the cavity

□ High RF voltage is needed at recapture → a large emittance blow-up.

Y

Macro-particle simulations \rightarrow reproduce the data

