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Intro - open questions in HE  dynamics

Geometry of hard collisins - from on 1D to 2D and 3D

From geometry of multiple collisions to pQCD dynamics 
of double parton scattering (DPS)

pA DPS  collisions collisions, centrality and ultimate 
 test of hard DPI dynamics

☛

☛

☛

☛

For a detailed review of MPI i see the our review in 
Adv.Ser.Direct.High Energy Phys. 29 (2018) 63-99



Challenges for building realistic description of inelastic pp 
collisions (willhave time to discuss only I & II
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◆

◆

Challenge I I - include parton - parton correlations to describe 
multiparton interactions with realistic single parton transverse 
densities   

Consistent evidence from analysis of HERA data and 
leading pion production in d- Au for   black disk regime 
(BDR) for gluons up to transverse momenta 1 -- 1.5 
GeV/c at x ~10-4 

 Challenge III -  realistic modeling effects of BDR at moderate transverse momenta

◆ Challenge I  - including realistic transverse parton distributions in 
modeling pp collisions

◆ Challenge V - studies of forward production at LHC - most sensitive 
to the BDR dynamics and in particular effective fractional energy 
losses

Challenge IV - accounting for diffractive part of inelastic cross 
section

◆



High energy hard processes - dual role:

Understanding QCD dynamics in the ultra  high energy limit 
when the rate of hard interactions per event is  > 1 leading to 
possibly to change of interplay between soft and hard QCD

Exploring nucleon structure 

1D  2D  3D  
parton distribution 
 function (pdf)

generalized pdfs double parton 
generalized pdfs

inclusive parton -  
parton interactions

exclusive hard  
processes

multiparton  
nteractions

!4



One dimensional  (1D) image of nucleon in momentum space - 
distribution over x - the fraction of the momentum carried by constituents 
(q2-dependent)

         Naive model of proton = 2 u quarks + 1 d-quark

At high resolution: proton = valence quarks + sea quarks and 
antiquarks + a lot of gluons at x<0.1

QCD predicts evolution of quark
 and gluon distributions with Q2 =-q2
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 Determination of the longitudinal momentum distribution - parton [generic for quark 
and gluon] densities - QCD theorems for the inclusive cross sections - proofs based 
on closure was  first step of the nucleon image reconstruction  in QCD 

Test:  parton(x1) + parton(x2) ➝ parton’ (jet1) + parton” (jet2) 

Cross section of dijet production Dijet event at LHC, CMS
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Central pp 
collisions 

Important characteristic of high energy collisions is the impact parameter of 
collision. Well defined  since angular momentum is conserved and L = bp 

Different intensity of interactions for small and large impact parameters 

Small b ➠ large 
overlap
 of partons

Large probability of 
multiparton, 

soft/hard interactions

b b

transverse view

side view

Peripheral 
pp collisions 

Two scale 
picture

Using realistic transverse parton distributions is 
critical for genuine understanding of final states in pp
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b
N

N

ρ1→ ρ2→

→
jet

jet
fj(x1, ⇥�1) fj0(x2, ⇥�2)

⇥�1 +⇥b� ⇥�2 / 1/ptjet ⇠ 0

Geometry of pp collision with production of dijet  in the transverse plane 

Diagonal Generalized 
Parton distribution - 

For hard collision

⇤h /
Z

d2bd2⇥1d
2⇥2�(⇥1 + b� ⇥2)f1(x1, ⇥1)f2(x2, ⇥2)⇤2!2

=

Z
d2�1d

2�2f1(x1, �1)f2(x2, �2)⇥2!2 = f1(x1)f2(x2)�2!2

For inclusive cross section at high virtuality transverse size & 
structure does not matter - convolution of parton densities.

However critical for understanding global structure of inelastic events 

⇓
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⇓
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If pQCD works at LHC at pt > 4 GeV/c -  a generic inelastic 
event should contain many mini dijets:

jet multiplicity = (inclusive jet σ)/ σinel (nondiffr) (pp)

also show the cross section with |η| < 2.5 using a fixed value of αs = 0.2. This illustrates
that the infrared behaviour of the strong coupling does not affect significantly the phys-
ical picture in the pT region where the jet cross section approaches the inelastic bound.
The rise of the cross section is essentially coming from the 1/t2 pole of the partonic matrix
element, as explained in [10].

We then consider the cross section of jets at particle level. We suppose measuring jets
at low transverse momenta in the visible range |η| < 2.5. In order to reconstruct the jets
we use the anti-kT algorithm [17] with R = 0.5 down to low transverse momenta. The
visible jet cross section is shown in Fig. 2 using PYTHIA [9]. The solid line corresponds
to the partonic cross section (of Fig. 1). We show the effect of turning on successively
intrinsic kt, initial and final state parton showers (IFPS) and finally hadronisation (using
default parameters, without allowing a taming of the cross section). In Fig. 2 (left) the
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Figure 2: (Left) Cross section from purely partonic 2 → 2 process, including intrinsic kt-effects,
including initial and final state parton showers (IFSR) and finally hadronisation. (Right) predicted
cross section applying pT0 ≠ 0 and MPI with different underlying event tunes of PYTHIA.

perturbative result reaches the inelastic bound [6] for minimum pT ≃ 4 GeV. In the region
just above this value, pT = O(10) GeV, effects responsible for the taming of the cross
section set in. The model [10, 18] provides a phenomenological modification of the low-
pT behaviour of the jet cross section within a collinearly-factorised framework; the rise of
the cross section is tamed at small values of pT by introducing a factor:

α2
s(p

2
T0 + p2T )

α2
s(p

2
T )

p4T
(p2T0

+ p2T )
2
, (2)
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A. Grebenyuk et al, 2012

10 dijets with pt > 4 GeV/c  per 
nondiffractive event !!!

Transverse size matters for distribution over  fraction of events with N pairs of jets 

�(pp ! N dijets +X) / (transverse area of nucleon)1�N



Onset of nonlinear regime and suppression of minijets in pp collisions 

Observation of MC models - need to suppress production of minijets

PYTHIA - suppression factor 

HERWIG �(pT � p00(s))

p0(
p
s = 7TeV ) ⇡ 3GeV/cR(pT ) =

✓
p2T

p2T + p20(s)

◆2

;

R(pT = 4GeV/c) = 0.4

Is the need for modification of dynamics for minijet range (po ~10 GeV/c !! at  
highest cosmic energies - near GZK cutoff) been an artifact of  MC or signal for 
serious problems?

p0(s) / s0.12
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Is transverse size realistic?



Transverse structure from exclusive processes.

Transverse distributions: Exclusive processes
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• Hard exclusive meson production

Meson produced in small–size qq̄ configuration

QCD factorization theorem Q2
eff ≫ |t|

Collins, Frankfurt, Strikman 96

GPDs: Partonic form factor of nucleon,
universal, process–independent Ji 96, Radyushkin 96

Operator definition ⟨N ′| twist-2 |N⟩,
renormalization, non-pert. methods

• Transverse spatial distribution of gluons x′ = x

G(x, ρ) =

∫

d2∆T

(2π)2
e−iρ∆T GPD(x, t) 2D Fourier

Tomographic image of nucleon at fixed x,
changes with x and Q2

• Large x: Quark GPDs, polarization,
longitudinal momentum transfer x′ ̸= x
JLab12: DVCS, meson production

Hard exclusive meson production
Meson is produced in a small size
 q bar q configuration

QCD factorization theorem for Q2eff >>|t|

Collins, Frankfurt, MS, 1996

Parton  form factors of nucleon - 
universal (process independent)

Transverse distributions: Exclusive processes
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the analysis of ref.20 .
.
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Fig. 2. The exponential t–slope, BJ/� , of the di�erential cross section of exclusive
J/� photoproduction measured in the FNAL E401/E458,13 HERA H1,15 and ZEUS14

experiments, as a function of x = M2
J/�/W

2. (In the H1 and ZEUS results the quoted

statistical and systematic uncertainties were added linearly.) The dashed lines represent
the published two–dimensional fits to the H1 and ZEUS data.14,15 The parameter Bg in
the exponential two–gluon form factor is related to the measured J/� slope by Eq. (4).
Our parametrization Eqs. (5)–(8) is shown by the solid line.

The data can be fitted as

Bg(x) = Bg0 + 2�⇥
g ln(x0/x), (5)

x0 = 0.0012, (6)

Bg0 = 4.1 (+0.3
�0.5) GeV�2, (7)

�⇥
g = 0.140 (+0.08

�0.08) GeV�2. (8)

Fits of similar quality are produced with a dipole with

Fg(x, t|Q2) = (1� t/m2
g)

�2, Bg = 3.2/m2
g. (9)

The spatial distributions of gluons in the transverse plane for two fits
are given by

Fg(x, ⇤|Q2) =

�
⇤

⇥

(2⇥Bg)
�1 exp[�⇤2/(2Bg)],

[m2
g/(2⇥)] (mg⇤/2) K1(mg⇤),

(10)

These transverse distributions are similar for average ⇤, leading, for exam-
ple, to nearly identical distributions over the impact parameter for pro-
duction of the dijets in pp collisions16 . At the same time, dipole fits gives

B = B(W0) + 2�0 ln(W 2/W 2
0 )

f(x, x, t) = gN (x)F2g(t)

d�

dt
/ F 2

2g(t) = exp(Bt)

= (1� t/m2
g)

�4

Nucleon structure: Many–body system
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• Components probed predominantly

x > 0.1 Valence quarks: Source,
quantum numbers
Also gluons!

∼ 10−1..2 Sea quarks, gluons:
Quantum numbers
Generated by non–pert. interactions

x < 10−2 Gluons, singlet sea:
Radiatively generated

• Physical properties

Particle number densities,
incl. spin/flavor PDFs

Transverse spatial distributions GPDs

Orbital motion, ang. momentum TMDs

Quantum fluctuations: Dispersion

Multiparton correlations MPDs, GPDs

Densities with operator definition ⟨N |QCD–Op |N⟩
Calculable with non–perturbative methods
Scale dependence from RNG equation.
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Transverse distributions: Gluons
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b
N

N

ρ1→ ρ2→

→
jet

jet
fj(x1, ⇥�1) fj0(x2, ⇥�2)

Two pairs of partons can collide in a single collision

fk(x3, ~⇢3) fk(x4, ~⇢4)

Naive geometric picture - two independent parton - parton collisions --- rate depends on 
the nucleon size only. However this assumes absence  of parton - parton correlations. Pairs 
collide at relative transverse distance ~ 0.5 fm.



Experimentally  one measures

where f (x1,x3), f (x2,x4) longitudinal light-cone double parton densities and
 σeff is ``transverse correlation area''.  One selects kinematics where 2 →4 (LT two partons 
into four partons) contribution is small

 14

 CDF observed the effect in a restricted x-range:  two balanced jets, and jet + photon and found

No significant dependence of   σeff    on   xi     was observed.  

 A naive expectation (based on rN=0.8 fm) is   σeff ~ 55 mb 
indicating  high degree of correlations between partons in 
the nucleon  in the  transverse plane  - next few more 
technical  slides

12

TABLE V: Systematic (δsyst), statistic (δstat) and total δtotal uncertainties (in %) for σeff in the three pjet2T bins.

pjet2T Systematic uncertainty sources δsyst δstat δtotal
(GeV) fDP fDI εDP/εDI JES Rcσhard (%) (%) (%)
15 – 20 7.9 17.1 5.6 5.5 2.0 20.5 3.1 20.7
20 – 25 6.0 20.9 6.2 2.0 2.0 22.8 2.5 22.9
25 – 30 10.9 29.4 6.5 3.0 2.0 32.2 2.7 32.3

The measured σeff values in the different pjet2T bins
agree with each other within their uncertainties, how-
ever a slow decrease with pjet2T can not be excluded. The

σeff value averaged over the three pjet2T bins is

σave
eff = 16.4± 0.3(stat)± 2.3(syst) mb. (16)
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FIG. 11: Effective cross section σeff (mb) measured in the
three pjet2T intervals.

B. Models of parton spatial density

In this section we study the limits that can be obtained
on the parameters of three phenomenological models of
parton spatial density using the measured effective cross
section (16). In the discussion below we follow a sim-
ple classical approach. For a given parton spatial density
inside the proton or antiproton ρ(r), one can define a
(time-integrated) overlap O(β) between the parton dis-
tributions of the colliding nucleons as a function of the
impact parameter β [10]. The larger the overlap (i.e.
smaller β), the more probable it is to have at least one
parton interaction in the colliding nucleons. The single
hard scattering cross sections (for example, γ+jets or di-
jet production) should be proportional to O(β) and the
cross section for the double parton scattering is propor-
tional to the squared overlap, both integrated over all
impact parameters β [28, 36]:

σeff =
[
∫

∞

0
O(β) 2πβ dβ]2

∫

∞

0
O(β)2 2πβ dβ

. (17)

First, we consider the “solid sphere” model with a con-
stant density inside the proton radius rp. In this model,
the total hard scattering cross section can be written

as σhard = 4πr2p and σeff = σhard/f . Here f is the
geometrical enhancement factor of the DP cross sec-
tion. It is obtained by solving Eq. (17) for two overlap-
ping spheres with a boundary conditions that the par-
ton density ρ(r) = constant for r ≤ rp and ρ(r) = 0
for r > rp and found to be f = 2.19. The role of
the enhancement factor can be seen better if we rewrite
Eq. (1) as σDP = fσAσB/σhard. The harder the single-
parton interaction is the more it is biased towards the
central hadron-hadron collision with a small impact pa-
rameter, where we have a larger overlap of parton den-
sities and, consequently, higher probability for a sec-
ond parton interaction [5]. Using the measured σeff ,
for the solid sphere model we extract the proton ra-
dius rp = 0.53 ± 0.06 fm and proton rms-radius Rrms =
0.41 ± 0.05 fm. The latter is obtained from averaging
r2 as R2

rms ≡
∫

∞

0
r24πr2ρ(r)dr = 4π

∫

∞

0
ρ(r)r4dr [37].

The results are summarized in the line “Solid Sphere”
of Table VI. The Gaussian model with ρ(r) ∝ e−r2/2a2

and exponential model with ρ(r) ∝ e−r/b have been also
tested. The relationships between the scale parameter
(rp, a or b) and rms-radius for all the models are given in
Table VI. The relationships between the effective cross
section σeff and parameters of the Gaussian and expo-
nential models are taken from [38], neglecting the terms
that represent correlations in the transverse space. The
scale parameters and rms-radii for both models are also
given in Table VI. In spite of differences in the models,
the proton rms-radii are in good agreement with each
other, with average values varied as 0.41− 0.47 and with
about 12% uncertainty. On the other hand, having ob-
tained rms-radius from other sources (for example, [39])
and using the measured σeff , the size of the transverse
correlations [38] can be estimated.

IX. SUMMARY

We have analyzed a sample of γ + 3 jets events col-
lected by the D0 experiment with an integrated lumi-
nosity of about 1 fb−1 and determined the fraction of
events with hard double parton scattering occurring in
a single pp̄ collision at

√
s = 1.96 TeV. These fractions

are measured in three intervals of the second (ordered
in pT ) jet transverse momentum pjet2T and vary from

0.466± 0.041 at 15 ≤ pjet2T ≤ 20 GeV to 0.235± 0.027 at

25 ≤ pjet2T ≤ 30 GeV.

In the same three pjet2T intervals, we calculate an ef-

Similar results from D0.

�eff = 14.5± 1.7+ 1.7
� 2.3 mb

2

I. INTRODUCTION

It is widely realized now that hard Multiple Parton Interactions (MPI) occur with a probability

of the order one in typical inelastic LHC proton-proton pp collisions. Indeed the ratio of the integral

of the inclusive jet cross section with transverse momenta p? � few GeV and �inel(NN) gives the

average multiplicity of hard collisions (dijet production) larger than one, see e.g. [1, 2]. Hence MPI

play an important role in the description of inelastic pp collisions. MPI were first introduced in

the eighties [3, 4] and in the last decade became a subject of a number of the theoretical studies,

see e.g. [5–28] and references therein.

Also, in the past several years a number of Double Parton Scattering (DPS) measurements in

di↵erent channels were carried out [29–39], while many Monte Carlo (MC) event generators now

incorporate MPIs [40–50].

The double parton scattering (DPS) cross section is traditionally parameterized as

d�(4 ! 4)

d⌦1d⌦2
=

1

�eff

d�(2 ! 2)

d⌦1

d�(2 ! 2)

d⌦2
, (1)

where ⌦i is the phase volume for production of a pair of jets where �eff is a priori a function

of xi, pti Initially it was conjectured [3] that parameter �eff is related to the total inelastic cross

section of the hadron - hadron interactions.

Later on within the framework of the geometric picture implemented in the Monte Carlo models

�e↵ was written as a convolution of the four single parton impact parameter distributions, g(⇢i)

assuming that these distributions do not depend on x and on flavor, cf. Fig. 1.

1

�eff
=

Z
d2⇢id

2bg(⇢1)g(⇢3)g(⇢2)g(⇢3)g(⇢4)�(~⇢1 � ~⇢3 �~b)�(~⇢2 � ~⇢4 �~b). (2)

One can see from Eq.2 that the factor �e↵ characterizes the transverse area occupied by the partons

participating in two hard collisions. It also includes e↵ect of possible longitudinal correlations

between the partons.

Parameters of this distribution were chosen to reproduce the MPI data obtained at the Tevatron

which reported �e↵ ⇡ 15 mb.

Further study used the QCD factorization theorem for the exclusive vector meson production

to extract g(⇢, x|Q2) from the photo/electro production data. Under assumption that partons in

colliding nucleons are not correlated a much larger �e↵ � 30 mb was found [51]. This strongly

suggested that significant parton - parton correlations are present in nucleons.

In this paper we will summarize our studies of the mechanisms which generate perturbative

and nonperturbative correlations between the partons and allow to explain many features of the
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?

Independent transverse distribution of partons - assumed in all  MC 
models

4

over ki we obtain that transverse coordinates of par-
tons in the in the amplitude and the amplitude con-
jugated are equal ⇤i = ⇤f . In the calculation we use
the fact that that upper limit of integration over k2t is
very large compared with the inverse hadron size. Next
step is to perform integration over � which produces
�(✓⇤1�✓⇤2�✓⇤3+✓⇤4) =

⇤
d2B�(✓⇤1�✓⇤3� ✓B)�(✓⇤2�✓⇤4� ✓B).

The delta functions express the fact that within the ac-
curacy 1/pt where pt is the hard scale, the interactions of
partons from di⇥erent nucleons occur at the same point.
✓B is the relative impact parameter of two nucleons.
The expression for the cross section in the impact pa-

rameter space has the form which corresponds to geom-
etry of Fig.2

⌅4 =

⌃
d2Bd2⇤d2⇤1d

2⇤2d
2⇤3d

2⇤4D(x1, x2, ✓⇤1, ✓⇤2)

⇥ D(x3, x4, ✓⇤3, ✓⇤4) =

=

⌃
d2Bd2⇤1d

2⇤2D(x1, x2, ✓⇤1, ✓⇤2)

⇥ D(x3, x4, ✓B + ✓⇤1,� ✓B + ✓⇤2). (11)

Here the GPD in the impact parameter space represen-
tation is given by

D (x1, x2, ✓⇤1, ✓⇤2) =

=
n=⇥⌅

n=1

⌃ i=n⇧

i�3

�
dxid

2⇤i
⇥
⇧n(x1, ✓⇤1, x2, ✓⇤2, ...xi, ✓⇤i, )

⇥ ⇧+
n (x1, ✓⇤1, x2, ✓⇤2, ..., xi, ✓⇤i, ...)�(

i=n⌅

i=1

✓⇤i). (12)

The functions ⇧(x1, ✓⇤1, x2, ✓⇤2, ...) are just the Fourier
transforms in the impact parameter space of the light
cone wave functions and are given by

⇧ (x1, ✓⇤1, x2, ✓⇤2, ...) =

⌃ i=n⇧

i=1

d2k1
(2⇥)2

⇥ exp(i
i=n⌅

i=1

✓ki✓⇤i)⇧n(x1,✓k1, x2,✓k2, ..)(2⇥)
2

⇥ �(
⌅

✓ki). (13)

Thus the GPD defined in Eq. 5 is equivalent to the
representation for cross section that indeed corresponds
to the simple geometrical picture, but instead of a triple
integral we now have an integral over one momentum �.
Moreover, to determinate the cross section we need to
know the D(�). The GPD defined in Eq. 5 is useful

B

1

2

3

4

FIG. 2: Geometry of two hard collisions in impact parameter
picture.

for calculation of many di⇥erent processes. At the same
time the knowledge of the full double GPD is necessary
for complete description of events with a double jet trig-
ger since the pedestal strongly depends on the impact
parameter ✓B [10].
Let us stress that this picture is a natural generaliza-

tion of the correspondence between momentum represen-
tation and geometric picture for a conventional case of
two ⇤ two collisions. Indeed in this case it is easy to see
that the cross section in the momentum representation

⌅2 =

⌃
f(x1, p

2)f(x2, p
2)
d⌅h

dt̂
dt̂ (14)

has a simple geometric representation

⌅2 =

⌃
d2⇤1d

2Bf(x1, ✓⇤1, p
2)f(x2, ✓B � ✓⇤1, p

2)
d⌅h

dt̂
dt̂,

(15)
where

f(x, ✓⇤, p2) = ⇧+(x, ✓⇤, p2)⇧(x, ✓⇤, p2), (16)

and ⇧(x, ⇤) is the Fourier transform of the light cone wave
function defined above.
Let us now summarize our results. We have argued

that there exists the kinematical domain where the four
⇤ four hard parton collisions form the dominant mecha-
nism of four-jet production. In this region we calculated
the cross section, see Eqs. 2-4 and found that it can be
expressed through new two particle GPDs (see Eq. 5), ex-
pressed through light cone wave functions. These GPDs
depend on a transverse vector ✓� that measures the trans-
verse distance within the parton pairs. (Equivalent ex-
pressions for these GPDs can be easily given in terms of
the operator products.) In the impact parameter space
we derived the widely used intuitive geometric picture.
We argued that the enhancement of a four-jet cross sec-
tion is due to nonperturbative short range correlations in
the hadron, as determined by the range of integral of �.
The contribution of perturbative correlations in the ap-
propriate kinematic domain is suppressed. The detailed

Integral depends on convolution of functions   

f(x1, x2, ~�⇢) =

Z
d2⇢1d

2⇢2�(~⇢1 � ~⇢2 � ~�⇢)f(x1, ~⇢1)f(x2, ~⇢2)

MPI rate a factor of two smaller than experiment  !!!

LF, MS, Weiss 03�eff =
28⇡

m2
g

⇠ 32 mb.

⇥4 =

Z
d2Bd2�d2�1d

2�2d
2�3d

2�4D(x1, x2, ⇤�1, ⇤�2)⇥D(x3, x4, ⇤�3, ⇤�4)

=

Z
d2Bd2�1d

2�2D(x1, x2, ⇥�1, ⇥�2)⇥D(x3, x4, ⇥B + ⇥�1,� ⇥B + ⇥�2).



To reproduce  σeff in the independent parton approximation one needs 
mg2~2GeV2 (PYTHIA)

1
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dσ
/d

t  
 [n

b/
G

eV
2 ]

|t|  [GeV2]

FNAL E401/E458
γ  + p → J/ψ + p
〈Eγ〉 = 100 GeV
 〈x〉 = 0.05

Exponential Fg parametrization
Dipole Fg parametrization

PYTHIA

mg2 ~ 2 GeV2  leads to t -dependence which 
is  too weak to reproduce J/ψ exclusive 

photoproduction 
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Realistic model of MPI should include a 
factor ~2 contribution of correlations

 area occupied by gluons is at least a factor of two smaller than experiment
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Blok, Dokshitzer, LF, MS (BDFS) 11-12 derived geometric results  from the first 
principles and developed pQCD theory of MPI.  We  also discovered new pQCD 
mechanism of MPI due to pQCD evolution

2

ticular, we report here the derivation of the geometric
picture for multiple parton collisions in the impact pa-
rameter space. Up till now, this picture was being used
based on a semi-intuitive reasoning [5–14].

In the kinematical domain (1) the direct calculation
of the light cone Feynman diagrams (momenta of the
partons in the initial and final states are shown in Fig. 1)
using the separation of hard and soft scales shows that
the four ⌅ four cross section for the collisions of hadrons
”a” and ”b” has the form:

d⇧4 =

⇤
d2
�⌅
�

(2⌅)2

⇤
dx1

⇤
dx2

⇤
dx3

⇤
dx4

⇥ Da(x1, x2, p
2
1, p

2
2,
�⌅
�)Db(x3, x4, p

2
1, p

2
2,�

�⌅
�)

⇥ d⇧13

dt̂1

d⇧24

dt̂2
dt̂1dt̂2. (2)

Here D�(x1, x2, p21, p
2
2,
�⌅
�) are the new ”two particle”

GPDs for hadrons ”a” and ”b” defined below. (In the
following we will consider the case of pp collisions and
omit the subscript �. Summing over collisions of vari-
ous types of partons is implied. In practice however we
will keep hard scattering of gluons only since it gives the
dominant contribution.)

With account of the radiative pQCD e⇥ects, in full
analogy with the ”DDT formula” for two-body collisions,
the di⇥erential distribution (2) acquires Sudakov form
factors [15, 16] depending on the logarithms of the large
ratios of scales, j2t /⇥

2, and the GPDs become scale de-
pendent: p21 ⇤ ⇥213, p

2
2 ⇤ ⇥224. It should be mentioned that

the structure of the final formula depends on what one
actually measures in the experiment — whether energetic
single particles with large transverse momenta in the fi-
nal state or ”jets” — and on how the jets are precisely
defined. A more detailed account of the pQCD e⇥ects
will be given in a future publication [4].

For brevity we will not write explicitly the virtuality

scales of the GPDs and will use the form: D(x1, x2,
�⌅
�).

Note that these distributions depend on the new trans-

verse vector
�⌅
� that is equal to the di⇥erence of the mo-

menta of partons from the wave function of the collid-
ing hadron in the amplitude and the amplitude conju-
gated. Such dependence arises because the di⇥erence of
parton transverse momenta within the parton pair is not
conserved. The integration limits in xi, t̂ are subject to
standard limits determined by kinematic cuts.

Within the parton model approximation the cross sec-
tion has the form:

⇧4 = ⇧1⇧2/⌅R
2
int, (3)

where ⇧1 and ⇧2 are the cross sections of two indepen-
dent hard binary parton interactions. The factor ⌅R2

int
characterizes the transverse area occupied by the partons
participating in the hard collision. (In the experimental
[1, 2] and some of the theoretical papers this factor was

x ,  k
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x ,  k2 2 2

x ,  k3 3 3 3

x ,  k
1 1

2

J

J

J1 t

3 t

J

J
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4 t

1 1

FIG. 1: Kinematics of double hard collision - momenta of the
colliding partons in in and out states

denoted as an e⇥ective cross section. Our Eq. 4 below
shows that such wording is not satisfactory since ⌅R2

int
does not have the meaning of the interaction cross sec-
tion.) The data [1–3] indicates that ⌅R2

int is practically
constant in the kinematical range studied at the Teva-
tron.
Eq. 2 leads to the general model independent expres-

sion for

1

⌅R2
int

=

⇤
d2
�⌅
�

(2⌅)2
D(x1, x2,�

�⌅
�)D(x1, x2,

�⌅
�), (4)

in terms of two-particle GPDs.
The two particle GPDs are expressed through the light

cone wave functions of the colliding hadrons as follows.
Suppose that in a four ⌅ four process the two partons
in the nucleon in the initial state wave function have the
transverse momenta

�⌅
k1,

�⌅
k2. Then in the conjugated wave

function they will have the momenta
�⌅
k1+

�⌅
� ,

�⌅
k2�

�⌅
� . This

is because only sum of parton transverse momenta but
not the di⇥erence is conserved.
The relevant GPDs are:

D (x1, x2, p
2
1, p

2
2,
�⌅
�) =

��

n=3

⇤
d2k1
(2⌅)2

d2k2
(2⌅)2

⇤(p21 � k21)

⇥ ⇤(p22 � k22)

⇤ ⇥

i ⇥=1,2

d2ki
(2⌅)2

⇤ 1

0

⇥

i ⇥=1,2

dxi

⇥
⌅
⌃n(x1,⌥k1, x2,⌥k2, .,⌥ki, xi..)

⇥ ⌃+
n (x1,

�⌅
k1 +

�⌅
� , x2,

�⌅
k2 �

�⌅
� , x3,⌥k3, ...) + h.c.

⇧

⇥ (2⌅)3⇥(
i=n�

i=1

xi � 1)⇥(
i=n�

i=1

⌥ki). (5)

D’s are double generalized parton distributions

Δ- transverse disbalence 
between in and out partons

FROM GEOMETRY TO QCD

parton with x1 receives transverse kick of Δ,  and x2 of -Δ and nucleon survives
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D(x1, x2, p
2
1, p

2
2, ��) = G(x1, p

2
1, ��)G(x2, p

2
2, ��)

Hence  our result of 03  is pretty stable  since  F2g2(Δ) is measured directly.

F2g(x ⇠ 0.03, t) = (1� t/m2
g)

�2,m2
g ⇠ 1.1GeV 2

 A factor of at least 2 is missing !!!!

one line calculation

Practically the same number with exp(Bt)  fit.

1

�eff
=

Z
d2
�!
�

(2⇡)2
Da(x1, x2,�

�!
�)Db(x3, x4,

�!
�)

Da(x1)Da(x2)Db(x3)Db(x4)
,

�eff =
28⇡

m2
g

⇠ 32 mb.

Independent particle approximation which could be reasonable for 
moderately small x1,x2
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of the total transverse momentum of the pair: �2 = �213. It is important to stress that in the MPI

physics there is no factorization in the usual sense of the word. The cross sections do not factorize

into the product of the hard parton interaction cross sections and the multi-parton distributions

depending on momentum fractions xi and the hard scale(s). A general approach to double (multi)

hard interactions has been developed in [6]. It turned out that the transverse momentum of

the parton in the w.f. and that of its counterpart in the conjugated w.f. are indeed necessarily

di↵erent, with their di↵erence ~� being conjugate to the relative transverse distance between the

two partons in the hadron. This has led to introduction of the new object – generalized double

parton distribution, 2GPD, which depends on a new momentum parameter ~� [6, 9].

A. Generalized two-parton distribution

1. 2GPD and their connection to wave functions.

In [6, 9] we have shown that the QFT description of the double hard parton collisions calls for

introduction of 2GPD. Defined in the momentum space, it characterizes two-parton correlations

inside hadron [6]: Dh(x1, x2, Q2
1, Q

2
2; ~�). Here the index h refers to the hadron, x1 and x2 are

the light-cone fractions of the parton momenta, and Q2
1, Q

2
2 the corresponding hard scales. As has

been mention above, the two-dimensional vector ~� is the Fourier conjugate to the relative distance

between the partons 1 and 2 in the impact parameter plane. The distribution obviously depends

on the parton species; we suppress the corresponding indices for brevity.

The 2GPD are expressed through multiparton light cone wave functions as:

D(x1, x2, p
2
1, p

2
2,

�!
�) =

1X

n=3

Z
d2k1
(2⇡)2

d2k2
(2⇡)2

✓(p21 � k2
1)✓(p

2
2 � k2

2)

⇥

Z Y

i 6=1,2

d2ki
(2⇡)2

Z 1

0

Y

i 6=1,2

dxi (2⇡)3�(
i=nX

i=1

xi � 1)�(
i=nX

i=1

~ki)

⇥ n(x1,~k1, x2,~k2, .,~ki, xi..) 
+
n (x1,

�!
k1 +

�!
� , x2,

�!
k2 �

�!
� , x3,~k3, ...). (10)

Note that this distribution is diagonal in the space of all partons except the two partons involved

in the collision. Here  is the parton wave function normalized to one in the usual way. An

appropriate summation over color and Lorentz indices is implied.

The double hard interaction cross section (and, in particular, that of production of two dijets)

can be expressed through the convolution of 2GPDs.

Parton model expression for D

�19
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The e↵ective interaction area �e↵ defined in Eq. 1 is given by the convolution of the 2GPDs

of incident hadrons over the transverse momentum parameter ~� normalized by the product of

single-parton inclusive pdfs:

1

�e↵
⌘

R d2 ~�
(2⇡)2 Dh1(x1, x2, Q2

1, Q
2
2; ~�)Dh2(x3, x4, Q2

1, Q
2
2; �~�)

Dh1(x1, Q2
1)Dh1(x2, Q2

2)Dh2(x3, Q2
1)Dh2(x4, Q2

2)
. (11)

Eq. 11 (and similar expression for any number of MPI) can be rewritten in transverse coordinate

representation and corresponds to the transverse geometry depicted in Fig. 1 with ~� Fourier

conjugated to the di↵erence of transverse coordinates of partons: ~⇢1 � ~⇢3.

2GPDs enter also the expressions for the di↵erential distributions in the jet transverse momen-

tum imbalances ~�ik (integral of which over ~�ik is the “total” DPS cross section – Eq.11. In the

inclusive case the hardness parameters of the 2GPDs are given by the jet transverse momenta Q2
i ,

while for the di↵erential distributions — by the jet imbalances �2ik. The corresponding formulae

derived in the leading collinear approximation of pQCD can be found in Ref. [9]. It is worth em-

phasizing here that the DPS cross section does not factorize into the product of the hard parton

interaction cross sections and the two two-parton distributions depending on momentum fractions

xi and the hard scales, Q2
1, Q

2
2.

Note that one can introduce in the same way the N -particle GPD, GN , which can be probed

in the production of N pairs of jets [6]. In this case the first N arguments ki are shifted by
�!
�i

subject to the constraint
P

i
�!
�i = 0. So the cross section is proportional to

�2N /

Z i=NY

i=1

d
�!
� i

(2⇡)2
Da(x1, ...xN ,

�!
�1, ...

�!
�N )

⇥ Db(x
0
1, ...x

0
N ,

�!
�1, ...

�!
�N )�(

i=NX

i=1

�!
� i). (12)

N-parton GPD are expressed through multiparton wave functions analogously to Eq.10.

The above approach allows to take into account consistently the perturbative mechanism of two-

parton correlation when the two partons emerge from perturbative splitting of one parton taken

from the hadron wave function since one needs to separate these correlations from the 2 ! 4

mechanism of jet production.

In perturbative scenario the production of the parton pairs is concentrated at much smaller

transverse distances between partons. As a result, the corresponding contribution to 2GPD. turns

out to be practically independent of �2 in a broad range, up to the hard scale(s) characterizing

the hard process under consideration (�2 only a↵ects the lower limit of the transverse momentum

General case N of N hard collisions

!20
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Origin of correlations?  Perturbative vs non-perturbative. In principle 
delicate  interplay

D1,2
h (x1, x2, q

2
1 , q

2
2 ; ~�) = [2]Dh(x1, x2, q

2
1 , q

2
2 ; ~�) + [1]Dh(x1, x2, q

2
1 , q

2
2 ; ~�)

Qualitatively pQCD mechanism is --  parton at Q0 scale can resolve into 
two or more partons at higher scale with all partons localized in 
transverse area 1/Q02

two partons from
 the wave function

one parton that 
perturbatively 
splits into two

the two contributions  do not enter the physical DPI cross section in arithmetic 
sum,  driving one even farther from the familiar factorization picture based on 
universal(process independent) parton distributions.

5

violating general principles. This can be illustrated by
looking at the momentum sum rule for double parton
distributions.

An obvious momentum sum rule should be satisfied.
Namely, that the integral over dx2 with the weight x2

(summing over all parton species) should produce in the
end (1 � x1) times the inclusive one-parton distribution
D(x1), that is, the total longitudinal momentum carried
by all the partons but the triggered one:

X

i2

Z
dx2 x2 D

i1,i2
h (x1, x2;Q

2
1, Q

2
2;� = 0)

= (1� x1) ·D
i1
h (x1;Q

2
1).

(7)

This sum rule, together with other ones concerning va-
lence quantum numbers, has been discussed by Gaunt
and Stirling in [11] as means for restricting the form of
double parton distributions. Setting the � argument of
2GPD to � = 0 corresponds to taking integral over the
relative transverse distance between partons in the pro-
ton.

Derivation of (7) which is carried out in Appendix A
demonstrates that the perturbative parton splitting en-
ters on equal grounds with the contribution due to two
partons taken both from the initial non-perturbative
hadron wave function.

IV. “SHORT SPLIT” CONTRIBUTION TO DPI

As it was already mentioned above, the DPI show up
when one looks at production of two final state systems
(jet pairs, intermediate bosons, heavy quark pairs, etc.,
and their combinations) each of which has the transverse
momentum much smaller than its invariant mass (back-
to-back kinematics (1) for the four jet case).

An unbiased integration over transverse momenta of
the parton entering the hard collision up to the hard-
ness scale q2 lies in the nature of the notion of “parton
distributions”. This is the case for single inclusive pdfs.

Now we are interested in two hard interactions in a
single event. The structure of the formula (3) for the
total DPI cross section implies that we have in hand an
“ideal” probe that would allow two parton branches to
evolve perturbatively up to the corresponding scales q21
and q22 . In reality, however, in 1 ⌦ 2 subprocesses there
is a strong kinematical correlation between the two hard
vertices. And this is what makes a di↵erence: an addi-
tional 1⌦ 2 contribution to the DPI cross section arises,
not accounted for in (3), which is of the same order in
↵s log q as the main one (5b).

The origin of this extra piece has been discussed in
great detail in our previous publications. In particular, a
closed expression for the corresponding di↵erential distri-
bution in jet imbalances derived in the leading collinear
approximation was given in Eq. (27) of [14]. However, we
feel obliged to reiterate the point here since, our esteemed
colleagues apparently hesitate to buy into the statement.

The total cross section given by (3) and (5) originates
from a broad integration region in which jet pair trans-
verse momentum imbalances (1) are small and vary in-
dependently of each other. The formula for the double
di↵erential distribution closely resembles the “DDT for-
mula” for the Drell-Yan spectrum [26]. It contains the
two derivatives of the product of 2GPDs (5) that de-
pend on the corresponding �ik as hardness scales, and
the proper Sudakov form factors depending on (the ratio
of) the q2i and �2ik, see Eqs. (25), (26) of [14].
In the leading collinear approximation, the main con-

tribution � = O
�
(↵s log q)2

�
comes from the regions of

strongly ordered imbalances:

⇡2d�DPI

d2�13 d2�24
/

↵2
s

�213 �
2
24

; �213 � �224, �213 ⌧ �224, (8)

while the integral over �13/�24 = O (1) gives a subleading
correction � = O

�
↵2
s log q

�
. At the same time, there is

a specific additional source of double collinear enhance-
ment in the di↵erential cross section coming from the
region where the two imbalances nearly compensate each
other:

�02 = (~�13 + ~�24)
2
⌧ �2 = �213 ' �224. (9)

This enhancement characterizes the set of 1 ⌦ 2 graphs
in which there is no accompanying radiation with trans-
verse momenta exceeding |�0|. In this situation the par-

ton compensating the overall imbalance, ~k? = �~�0 is ra-
diated o↵ the incoming, quasi-real, parton legs as shown
in Fig. 1, while the virtual partons after the core split-
ting “000 ! “100 + “200 enter the hard collisions without
radiating any o↵spring on the way.

FIG. 1: Kinematics of the “short split” contribution

The 1 ! 2 splitting neighbors the hard vertices, there-
fore the name “short split” contribution. The dominant
integration region of the short split is complementary to
that of the main contribution (8):

⇡2d�DPI
short

d2�13 d2�24
/

↵2
s

�02 �2
; �02 ⌧ �2. (10)

The short split becomes less important when the scales of
the two hard collisions separate: q21 � q22 (or vice versa).
Indeed, the logarithmic integration over �2 is kinemati-
cally restricted from above, �2 < �2max ' min{q21 , q

2
2}. As

a result, when transverse momenta of jets in one pair

A short evolution 
contributions to cross section1⌦ 2
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The relative weight of the short split depends on the process under consideration. For most

DPS processes in the kinematical region we have studied, it typically provides 10–15% of the pQCD

correlation contribution. However, it becomes more important when the nature of the process favors

parton splitting. In particular, this is the case for the double Drell-Yan pair production where the

short split contribution reaches 30–35%. On the contrary, the short split turns out to be practically

negligible for the same-sign double W -meson production [12].

Thus, for the integrated DPS cross section we obtain two contributions to the e↵ective interac-

tion area:

Q4
i=1D(xi)

�4
=

Z
d2~�

(2⇡)2 [2]Dh1(x1, x2, Q
2
1, Q

2
2; ~�) [2]Dh2(x3, x4, Q

2
1, Q

2
2; �~�),

Q4
i=1D(xi)

�3
=
Z

d2~�

(2⇡)2


[2]Dh1(x1, x2, Q

2
1, Q

2
2;~�)[1]Dh2(x3, x4, Q

2
1, Q

2
2)

+ [1]Dh1(x1, x2, Q
2
1, Q

2
2)[2]Dh2(x3, x4, Q

2
1, Q

2
2;~�)

�
. (26)

Let us stress here that our analysis demonstrates that a compact and intuitively clear expression

containing the product of the 2GPDs [2]D and [1]D in Eq.26 is valid only for the integrated 1 ⌦ 2

cross section.

C. Modeling 1D terms.

Turning to the 1 ⌦ 2 term, we neglect a mild logarithmic �-dependence of [1]D in 26 and use

the model of section 3B for [2]D to obtain

�3
�1

'
7

3
·

"
[1]D(x1, x2)

D(x1)D(x2)
+

[1]D(x3, x4)

D(x3)D(x4)

#

⇥ �4
�1, (27)

where we substituted the value of the integral

Z
d2~�

(2⇡)2
F 2
2g(�

2) =
m2

g

12⇡
.

Very similar results are obtained for expomential parametrisation.

We will parametrize the result in terms of the ratio

R ⌘
�1⌦ 2

�2⌦ 2
=

�4

�3
. (28)

For the e↵ective interaction area,

��1
e↵ = ��1

4 + ��1
3 , (29)
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2
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�3
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Z

d2~�
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2
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2
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2
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2
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�3
�1

'
7

3
·

"
[1]D(x1, x2)

D(x1)D(x2)
+

[1]D(x3, x4)

D(x3)D(x4)

#

⇥ �4
�1, (27)

where we substituted the value of the integral

Z
d2~�

(2⇡)2
F 2
2g(�

2) =
m2

g

12⇡
.

Very similar results are obtained for expomential parametrisation.

We will parametrize the result in terms of the ratio

R ⌘
�1⌦ 2

�2⌦ 2
=

�4

�3
. (28)

For the e↵ective interaction area,

��1
e↵ = ��1

4 + ��1
3 , (29)

For the effective interaction area,  
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3. ud̄ plus two gluons, illustrating W+jj production.

4. ud̄ plus dū, corresponding to the W+W� channel.

B. Perturbative 1 ⌦ 2 correlation at the Tevatron.

1. CDF experiment

In Fig. 4 we show the profile of the 1 ⌦ 2 to 2 ⌦ 2 ratio R for the � + 3jets process in the

kinematical domain of the CDF experiment [29]. The calculation was performed for the dominant

“Compton scattering” channel of the photon production: g(x2) + u(ū)(x4) ! � + u(ū). The

longitudinal momentum fractions of two gluons producing second pair of jets are x1 and x3. The

typical transverse momenta were taken to be p?1,3 ' 5 GeV for the jet pair, and p?2,4 ' 20 GeV

for the photon–jet system. In Fig. 4 R is displayed as a function of rapidities of the photon–jet,

⌘2 = 1
2 ln(x2/x4), and the 2-jet system, ⌘1 = 1

2 ln(x1/x3).
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FIG. 4: The 1 ⌦ 2/2 ⌦ 2 ratio, Eq.28 in the CDF kinematics for the process pp̄ ! � + 3 jets + X.

We observe that the enhancement factor lies in the ballpark of 1 + R ⇠ 1.5 ÷ 1.8. Processed

through Eq. 30, it translates into �e↵ ' 18÷21 mb. This expectation has to be compared with the

CDF finding �e↵ = 14.5± 1.7+1.7
�2.3 mb. A recent reanalysis of the CDF data points at an even small

value: �e↵ = 12.0 ± 1.4 +1.3
�1.5 mb, [45]. Both these values are significantly smaller than our estimate

and the result of D0 experiment discussed in the next subsection.

The results of numerical calculation for a fixed hardness Q2 are shown in Fig. 4 for the CDF

kinematics. We find that the R factor and hence �e↵ exhibits a very mild x-dependence.
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�e↵ =
28⇡

m2
g

· 1

1 +R
' 32mb

1 +R

R ⌘ �1⌦2

�2⌦2
⇠ 1

Lengthy eqs &  numerical calculations.  Result:  if pQCD evolution starts at low Q0 = 
0.7 ÷ 1 GeV scale we explain a factor of ~2 enhancement  1/σeff   for large  pt.  σeff  

grows with decrease of pt while in MC’s  it is assumed to be  pt and process 
independent 

Geometry and combinatorics enhance  1⌦ 2 by a factor of 5 in pp scattering

Multiparton interactions in pA.--- probing parton correlations in nucleons  - 
maybe feasible at LHC (4 jets) . Two forward pions at RHIC  (Vogelsang, MS)

where f (x1,x3), f (x2,x4) longitudinal light-cone double parton densities and

 S is ``transverse correlation area''.  One selects kinematics where 2 →4 contribution is small

41

 CDF observed the effect in a restricted x-range:  two balanced jets, and jet + photon and found

No dependence of  S   on   xi     was observed.  

 A naive expectation (based on rN=0.8 fm) is  S~ 55 mb. Gluon 
radius is smaller --- S~ 35 mb. So S~ 15mb  indicate  presence of 
significant correlations between partons in the nucleon. Is it   
transverse plane correlation  or  correlation of x’s ?

12

TABLE V: Systematic (δsyst), statistic (δstat) and total δtotal uncertainties (in %) for σeff in the three pjet2T bins.

pjet2T Systematic uncertainty sources δsyst δstat δtotal
(GeV) fDP fDI εDP/εDI JES Rcσhard (%) (%) (%)
15 – 20 7.9 17.1 5.6 5.5 2.0 20.5 3.1 20.7
20 – 25 6.0 20.9 6.2 2.0 2.0 22.8 2.5 22.9
25 – 30 10.9 29.4 6.5 3.0 2.0 32.2 2.7 32.3

The measured σeff values in the different pjet2T bins
agree with each other within their uncertainties, how-
ever a slow decrease with pjet2T can not be excluded. The

σeff value averaged over the three pjet2T bins is

σave
eff = 16.4± 0.3(stat)± 2.3(syst) mb. (16)
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FIG. 11: Effective cross section σeff (mb) measured in the
three pjet2T intervals.

B. Models of parton spatial density

In this section we study the limits that can be obtained
on the parameters of three phenomenological models of
parton spatial density using the measured effective cross
section (16). In the discussion below we follow a sim-
ple classical approach. For a given parton spatial density
inside the proton or antiproton ρ(r), one can define a
(time-integrated) overlap O(β) between the parton dis-
tributions of the colliding nucleons as a function of the
impact parameter β [10]. The larger the overlap (i.e.
smaller β), the more probable it is to have at least one
parton interaction in the colliding nucleons. The single
hard scattering cross sections (for example, γ+jets or di-
jet production) should be proportional to O(β) and the
cross section for the double parton scattering is propor-
tional to the squared overlap, both integrated over all
impact parameters β [28, 36]:

σeff =
[
∫

∞

0
O(β) 2πβ dβ]2

∫

∞

0
O(β)2 2πβ dβ

. (17)

First, we consider the “solid sphere” model with a con-
stant density inside the proton radius rp. In this model,
the total hard scattering cross section can be written

as σhard = 4πr2p and σeff = σhard/f . Here f is the
geometrical enhancement factor of the DP cross sec-
tion. It is obtained by solving Eq. (17) for two overlap-
ping spheres with a boundary conditions that the par-
ton density ρ(r) = constant for r ≤ rp and ρ(r) = 0
for r > rp and found to be f = 2.19. The role of
the enhancement factor can be seen better if we rewrite
Eq. (1) as σDP = fσAσB/σhard. The harder the single-
parton interaction is the more it is biased towards the
central hadron-hadron collision with a small impact pa-
rameter, where we have a larger overlap of parton den-
sities and, consequently, higher probability for a sec-
ond parton interaction [5]. Using the measured σeff ,
for the solid sphere model we extract the proton ra-
dius rp = 0.53 ± 0.06 fm and proton rms-radius Rrms =
0.41 ± 0.05 fm. The latter is obtained from averaging
r2 as R2

rms ≡
∫

∞

0
r24πr2ρ(r)dr = 4π

∫

∞

0
ρ(r)r4dr [37].

The results are summarized in the line “Solid Sphere”
of Table VI. The Gaussian model with ρ(r) ∝ e−r2/2a2

and exponential model with ρ(r) ∝ e−r/b have been also
tested. The relationships between the scale parameter
(rp, a or b) and rms-radius for all the models are given in
Table VI. The relationships between the effective cross
section σeff and parameters of the Gaussian and expo-
nential models are taken from [38], neglecting the terms
that represent correlations in the transverse space. The
scale parameters and rms-radii for both models are also
given in Table VI. In spite of differences in the models,
the proton rms-radii are in good agreement with each
other, with average values varied as 0.41− 0.47 and with
about 12% uncertainty. On the other hand, having ob-
tained rms-radius from other sources (for example, [39])
and using the measured σeff , the size of the transverse
correlations [38] can be estimated.

IX. SUMMARY

We have analyzed a sample of γ + 3 jets events col-
lected by the D0 experiment with an integrated lumi-
nosity of about 1 fb−1 and determined the fraction of
events with hard double parton scattering occurring in
a single pp̄ collision at

√
s = 1.96 TeV. These fractions

are measured in three intervals of the second (ordered
in pT ) jet transverse momentum pjet2T and vary from

0.466± 0.041 at 15 ≤ pjet2T ≤ 20 GeV to 0.235± 0.027 at

25 ≤ pjet2T ≤ 30 GeV.

In the same three pjet2T intervals, we calculate an ef-

Similar results from D0.

x ,  k
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Experimentally  one measures the  ratio 
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S = 14.5± 1.7+ 1.7
� 2.3 mb
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FIG. 8: �e↵ for two dijets in DPS at the LHC.
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FIG. 7: Rapidity dependence of the R factor for two pairs of p? = 50GeV jets produced in gluon-gluon

collisions

Dependence on the hardness parameters of the DPS process of double gluon–gluon collisions

is illustrated in Fig. 8. For the sake of illustration, we have chosen the value of the p? cuto↵

parameter, varied Q2
0 = 0.5, 1, 2 GeV2, and calculated the �e↵ as a function of transverse momenta

of the second dijet. [21]

For considered
p

s, p? range, R increases by about 15–25% with increase of the hardness of one

of the jet pairs. This corresponds to approximately 10% drop of �e↵.
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is illustrated in Fig. 8. For the sake of illustration, we have chosen the value of the p? cuto↵

parameter, varied Q2
0 = 0.5, 1, 2 GeV2, and calculated the �e↵ as a function of transverse momenta

of the second dijet. [21]

For considered
p

s, p? range, R increases by about 15–25% with increase of the hardness of one

of the jet pairs. This corresponds to approximately 10% drop of �e↵.
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does not belong to the DPS mechanism [6, 8, 9]. Treating the the amplitude corresponding to

splitting of two incoming partons at the one –lop level, corresponds to the two-loop accuracy for

the cross section. Until this accuracy is achieved, the values of �e↵ extracted by experiments should

be considered as tentative.

Our first conclusion is that in the kinematical region explored by the Tevatron and the LHC

experiments, the x-dependence of �e↵ turns out to be rather mild. This by no means implies,

however, that �e↵ can be looked upon as any sort of a universal number. On the contrary, we see

that the presence of the perturbative correlation due to the 1 ⌦ 2 DPS mechanism results in the

dependence of �e↵ not only on the parton momentum fractions xi and on the hardness parameters,

but also on the type of the DPS process.

For example, in the case of golden DPS channel of production of two same sign W bosons [5] the

discussed mechanism leads to expectation of significantly larger �e↵ than for, say, W plus two jets

process. Indeed, the comparison of the values of R for central production of two gluon jet pairs,

Wjj and W+W+ (with jet transverse momenta p? ' MW /2), gives (
p

s = 7TeV, ⌘1 = ⌘2 = 0)

qR(jj + jj) = 1.18 (0.81)

R(W + jj) = 0.75 (0.45)

R(W+W+) = 0.49 (0.26)

(34)

for Q2
0 = 0.5 (1.0) GeV2. As a result of the di↵erent magnitude of the perturbative correlation

contribution for di↵erent processes, the e↵ective interaction areas �e↵ comes out to be significantly

di↵erent for the three processes:

jj + jj : �e↵ = 14.5 ÷ 20 mb,

W + jj : �e↵ = 20 ÷ 23.5 mb,

W+W+ : �e↵ = 21.5 ÷ 25.4 mb.

(35)

In all cases the e↵ective cross section is smaller for lower Q2
0 due to a more developed perturbative

parton cascades.

In di↵erence from the W+W+ channel, the double Drell-Yan process favors the 1⌦2 mechanism,

g ! uū. As a result, the e↵ective interaction area in this case turns out to be significantly smaller.

For example, for the central production of two Z bosons at
p

s = 7TeV we find

R(ZZ) = 1.03 (0.73), corresponding to �e↵(ZZ) = 15.9 ÷ 18.5 mb. (36)

The results for �e↵ for higher LHC energies are quite close (within the accuracy of measure-

ments), cf. Figs. 8, 10, and have similar pattern.

Predictions for LHC

W+W+ predictions  tend to be higher  than the recent 
data, but errors are large - may require even more 
correlations than pQCD. Problem - subtraction of LT 
contribution, etc.
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Small x challenge: transverse size grows with decrease of x, leading to larger area 
and hence larger  σeff

Double  charm ( D-meson + D-meson) production do not show such a trend. - possible 
explanation is diffraction
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We mentioned above that an important feature of the 1⌦2 mechanism is its dependence on the

hardness of the process. With increase of Q2
i , the 1 ⌦ 2 to 2 ⌦ 2 ratio R is predicted to increase

rather rapidly, resulting in smaller values of �e↵. At the same time, with decrease of the p? of the

jets this contribution decreases. We have seen above, that such a trend is consistent with the D0

data for x � 10�2, Fig. 6.

VI. NON-FACTORIZED CONTRIBUTION TO 2D AT THE INITIAL Q0 SCALE.

A. Basic ideas

There is an additional contribution to the DPS at small x which is related to the soft dynamics.

It was first discussed in [11], and in a more detail in [23]. It was demonstrated in [23] that soft

dynamics leads to positive correlations between partons at small x which have to be included in

the calculation of the DPS cross section. These soft correlations can be calculated using the con-

nection between correlation e↵ects in MPI and inelastic di↵raction. The emerging non-factorized

contribution to 2GPD is calculated at the initial scale Q2
0 that separates soft and hard physics

and which we consider as the starting scale for the DGLAP evolution. One expects that for this

scale the single parton distributions at small x are given by the soft Pomeron and soft Reggeon

exchange.

x
x x

x
x1,pt + �

� ��x2,rtx1,pt

x2,rt��

FIG. 11: 2GPD as a two Pomeron exchange

+

p p p
p

p p p
MX

x x x x x x1 1 12 2 2

FIG. 12: 2IP contribution to 2D and corresponding Reggeon diagrams

The diagrams of Fig. 11,12 lead to a simple expression for the non-factorizable/correlated con-
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FIG. 13: �e↵ as a function of the transverse scale p? for Q2
0 = 0.5 (left),and Q2

0 = 1 GeV2 (right) in the

central kinematics. We present the mean field, the mean field plus 1 ⌦ 2 mechanism and total �e↵ for
p

s=

13 TeV.

⇥ 2D(z1, z2, Q
2
0)nf , (39)

where G(x1/z1, Q2
1, Q

2
0) is the conventional DGLAP gluon-gluon kernel [55] which describes evo-

lution from Q2
0 to Q2

1. In our calculation we neglect initial sea quark densities in the Pomeron at

scale Q2
0 (obviously Pomeron does not receive contribution from the valence quarks). We refer to

[28] for numerical calculation of K.

B. �e↵ in the central kinematics

. The enhancement coe�cient is now given by the

R = RpQCD + Rsoft. (40)

where RpQCD corresponds to the contribution of 1 ⌦ 2 pQCD mechanism (Fig. 3 right) and was

calculated in [12], while the expression for Rsoft is given by

Rsoft =
4K

1 + Binel/Bel
+

K2Bel

Bin
+ KRpQCDBel/Binel, (41)

where we calculate all factors for x1 = x2 = x3 = x4 =
p

4Q2/s, with s being invariant energy of

the collision. We present our numerical results in Figs. 13,14:cfigR17.pdf
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FIG. 14: R for di↵erent Q2
0 and

p
s =13 TeV.

A factor of two smaller σeff than the mean 
 field approximation

Consistent with LHCb data on DD production. 
 Double J/psi  much higher cross section.
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Further studies are necessary to check the origin of the parton - parton 
correlations. 

Correlations in the wave function  at a low Q scale
Weiss & MS  - quark - antiquark correlations at moderate x~0.1 

Pomeron splitting Correlations at  x~ 10-3

❖

❖

Other mechanisms

Neglect of correlation term in MCs resulted in two versions of PYTHIA  MC:

(a) σeff= 30 mb for min-bias , (b) σeff= 15 mb for high pt 4 jets 

Dynamical approach to MPI four-jet production in Pythia: B. Blok , P. 
Gunnellini-(0215) build in dynamics: σeff dropping with increase of pt 
of the jets -- describes both sets of data. Implemented now as one of 
the options of PYTHIA  8.242 1.7.2019). MPI are reweighs according 
to our GPDs and pQCD splitting

http://inspirehep.net/record/1357009
http://inspirehep.net/author/profile/Blok%2C%20B.?recid=1357009&ln=en
http://inspirehep.net/author/profile/Gunnellini%2C%20P.?recid=1357009&ln=en
http://inspirehep.net/author/profile/Gunnellini%2C%20P.?recid=1357009&ln=en


The distribution of interactions over b for events with inclusive dijet trigger 
(Higgs production,...) is given by

P2(b) =

Z
d2⇥1

Z
d2⇥2�

(2)(⇤b� ⇤⇥1 + ⇤⇥2)Fg(x1, ⇥1)Fg(x2, ⇥2),

Fg(x, ⇥) =
m2

g

2�

⇣mg⇥

2

⌘
K1(mg⇥)Fg(x, t) = 1/(1� t/mg(x)

2)for 

P2(b) =
m2

g

12�

✓
mgb

2

◆3

K3(mgb)

account that their transverse centers are separated by a dis-
tance b—the impact parameter of the pp collision; see Fig. 7.
This implies that the distribution of the cross section for such
events over the impact parameter b is given by

P2!b "#! d2$1! d2$2% (2)!b!!1"!2"

#Fg!x1 ,$1"Fg!x1 ,$2", !31"

where x1$2q! /!s , cf. Eqs. !29" and !30", and the scale of
the gluon $ profiles is q!

2 . This distribution is normalized
such that the integral over all b is unity. Since it has the form
of a convolution in the parton transverse positions, it can also
be expressed as the Fourier transform of the square of the
two-gluon form factor, Eq. !20". In particular, for the two-
gluon form factor of dipole form, Eq. !22", used in our model
of the $-dependent gluon distribution !see Sec. III" one ob-
tains

P2!b "$
mg
2

12& "mgb
2 #3K3!mgb ", !32"

where mg should be substituted by the value corresponding
to x1$2q! /!s and Q2$q!

2 , see Eq. !27".
Figure 8 shows the distribution P2(b) for a center-of-

mass energy of !s$14000 GeV !LHC", and two values of
the jet momentum, q!$10 GeV and 100 GeV. One sees that
the distribution is rather insensitive to the precise value of
the jet momentum. This can be explained by the relatively
slow decrease of '$2(with increasing x and Q2. The average
values of impact parameter squared, 'b2(, calculated with
these distributions, is 0.71 fm2 for q!$10 GeV and
0.63 fm2 for q!$100 GeV.
In Fig. 8 we assume production of a two-jet system at

zero rapidity, cf. Eq. !30". If we considered instead a two-jet
system at some nonzero rapidity, y, the !anyway weak" de-
pendence of the $ distributions in Eq. !31" on x1 and x2
would work in opposite directions, leading to an extremely
weak dependence of our results on the rapidity of the pro-
duced system over a wide range of y.

In Fig. 9 we compare the b distribution for the hard dijet
trigger, P2(b) !solid line", with the b distribution for generic
inelastic events, P in(s), estimated in Sec. II. The short-
dashed line in Fig. 9 shows the distribution P in(s) obtained
from the parametrization of the elastic pp amplitude of Islam
et al. )9* !‘‘diffractive’’ part only". Shown are the results for
!s$14000 GeV !LHC", 1800 GeV !Tevatron p̄p), and 500
GeV !RHIC". A momentum of q!$25 GeV was assumed for
the dijet trigger. One sees that in all cases the b distribution
for dijet events is much narrower than the one for generic
inelastic collisions. The corresponding averages 'b2( are
given in Table I. The average 'b2(for the hard dijet trigger
rises much more slowly with s than for generic inelastic col-
lisions, which are dominated by soft physics. Thus, the re-
duction in effective impact parameters due to the dijet trigger
is most pronounced at LHC energies, where 'b2(is reduced
to +1/4 its value for generic inelastic collisions.
A further reduction of the effective impact parameters can

be achieved by a trigger on events with two dijets, i.e., two
binary hard parton collisions !such processes can be easily
distinguished from the leading twist 2→4 processes in the
collider experiments; see, e.g., Ref. )7*". It was estimated in
Ref. )18* that this reduces 'b2(by a factor of two as com-
pared to the single dijet trigger. In our approach, the b dis-
tribution for the double dijet trigger is given by

P4!b "$
P2
2!b "

! d2bP2
2!b "

. !33"

For simplicity we assume here identical x1 and q! for the

FIG. 7. Illustration of the overlap integral of parton distributions
in the transverse plane, defining the b distribution for binary parton
collisions producing a dijet, Eq. !31".

FIG. 8. The b distribution for the trigger on hard dijet produc-
tion, P2(b), obtained with the dipole form of the gluon b profile,
Eq. !32", for !s$14000 GeV and q!$10 GeV and 100 GeV. The
plots show the ‘‘radial’’ distributions in the impact parameter plane,
2&bP2(b). Also shown is the corresponding distribution for a trig-
ger on double dijet production, P4(b), with the same p! .

DIJET PRODUCTION AS A CENTRALITY TRIGGER . . . PHYSICAL REVIEW D 69, 114010 !2004"

114010-7

Gluon GPDs and difference between transverse s b distributions 
for four  jet, dijet triggers and minimal bias  collisions

differential probability for dijet 
production to occur at given b

 30



Γh(s,b) =
1
2is

1
(2π)2

Z
d2~qei~q~bAhN(s, t)where

Pin(s, b) =
2Re �pp(s, b)� |�pp(s, b)|2

�in(s)

Compare with b-distribution for  minimal bias (generic) inelastic pp 
scattering

Γ(b) = 1 ⌘ σinel = σel - black disk regime (BDR).
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Impact parameter distributions of inelastic pp 
collisions at √s = 7TeV. Solid (dashed) line: 
Distribution of events with a dijet trigger at zero 
rapidity, y1,2 = 0, c, for pT = 100 (10) GeV . 
Dotted line: Distribution of minimum–bias 
inelastic events (which includes diffraction).

Median impact parameter b(median) of 
events with a dijet trigger, as a function of 
the transverse momentum pT , cf. left plot. 
Solid line: Dijet at zero rapidity y1,2 = 0. 
Dashed line: Dijet with rapidities y1,2 = ±2.5. 
The arrow indicates the median b for 
minimum–bias inelastic events.Weak dependence of P2(b) on rapidity and pT of 

the dijet
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FIG. 2: Normalized probabilities of minimum bias, inclusive two, and four parton collisions and collision

involving three partons as a function of the impact parameter.

Note here that in many experimental analyses the minimum bias cross section is defined as

the inelastic nondi↵ractive cross section. Since inelastic di↵raction is a peripheral process in pp

scattering, �min.bias defined this way corresponds to somewhat smaller b than the ones given by

Eq. 8.

For N � 2 dijet processes

bmedian(N) ⇡
1

p
N

bmedian(N = 1). (9)

Hence inclusive N � 2 processes are dominated by collisions at very small impact parameters

where gluon fields of two nucleons strongly overlap: bmedian < 2r(N)
g (x) (here r(N)

g (x) � 0.4fm is

the transverse radius of the gluon distribution in nucleons), cf. Fig. 2.

Since the large impact parameters give the dominant contribution to �inel our analysis indicates

that there are two pretty distinctive classes of pp collisions - large b collisions which are predomi-

nantly soft and and central collisions with strongly enhanced rate of hard collisions. We refer to

this pattern as the two transverse scale picture of pp collisions at collider energies [51].

III. GPD AND MEAN FIELD APPROACH TO MPI.

Descryption of the MPI is a multi-scale problem. This is not only because the separate parton–

parton interactions may di↵er in hardness. More importantly, each single hard interaction possesses

two very di↵erent hardness scales. The distinctive feature of the DPS is that it produces two pairs

of nearly back-to-back jets, so that in the collision of partons 1 and 3 the first (larger) scale is given

by the invariant mass of the jet pair, Q2 = 4J2
1? ' 4J2

3?, while the second scale is the magnitude

Centrality strongly depends on the trigger. For DPS 
significantly smaller b’s than for dijet trigger. Different 
structure of the underlying event -some features can be 
calculated (Azarkin, Dremin, MS)

!33



Conclusions I

Scenario: weak correlations / large  σeff  at low Q with pQCD 
generated correlations at large QQ allows to describe the data 
sensitive  to moderate virtualities (underlying event),…

Problem (?) - one uses pQCD  perturbation theory  starting at  at low Q~ 1 GeV 
where fits require a strong suppression of the parton - parton interaction a 
compared to LT.,

A stumbling block  for deterring   - uncertainties in modeling LT 
processes (2 —> 4)

New ideas are necessary - one possibility is to use pA scattering 

!34
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Questions

Origin of σeff=14 (20?) mb  which was till recently preferred by many MC models 

How well does the picture of minijets  works with pt  down  to pt ~  few GeV 
with momentum dependent suppression factor reflects underlying dynamics

How to separate DPS from contribution of 2 → 3,   2 → 4,… LT processes

!35

Centrality dependence of DPS in pA collisions - a window at minijet dynamics

M.Alvioli, M.Azarkin, B. Blok, M.Strikman



MPI in nuclei: testing minijet dynamics probing parton 
correlations in nucleons and nuclei 

MS & Treleani 95 - PRL  2002 DPS,  3 PS

R ⇤ �2

�1 · A
⌅ (A� 1)

A2
· �eff

⇤
T 2(b) d2b ⌅ 0.68 ·

�
A

12

⇥0.39

|A�12,�eff⇥14mb

linear in  σeff !!T (b) =
� ⇥

�⇥
dz�A(z, b),

�
T (b)d2b = A.

Nuclear pdf=
 A*( nucleon pdf)

 36

Aσ1 σ2
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“Antishadowing effect”:  For A=200, and σeff=14 mb [25 mb low Q] 

Measurement of R=σ2 /Aσ1 allows to separate longitudinal and transverse 
correlations of partons as it measures

�pA

A�pp
⇡ 3 �pA

A�pp
⇡ 4.5

R / f(x1, x2)

f(x1)f(x2)

σeff=14 mb σeff=25  mb

low Q

�pA

�pp
⇡ 3.8

σeff=20 mb

LHC large Q



Idea in nutshell

if no 2\to 3, 4 and and impact parameter b is known for each event

RDPS/LT (b) = �effT (b)

d�(DPS)
pA

d2b
= �pNTA(b) + �1�2T

2(b)

also

total including LT

model independent prediction for  $b$ - dependence of DPS  in terms of the 
elementary (DPS+LT ) pp cross section, σ1,σ2   and T(b). 

Nuclear pdf / nucleon pdf =1 for high p_t kinematics for leading pair of jets

!38

No need to separate LT!!!
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Problems

1) DPS usually a rather small fraction of the 
cross section in a given kinematics. Difficult to 
use pp data even the ones in rather similar 
kinematics

dijet pt> 50 GeV,η=4
+pion at 90o to dijet  
with given  pt

DPS/Total

2)  Accuracy of optical approximation 

3) How to measure b? Impossible - try geometrical (Glauber) model

1) can be addressed by subtracting large b cross section using small nuclear 
modification of pdf of nucleus. 
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MS & Treleani treatment of pA was based on partonic model. Since in  QCD 
in addition to
  2 ⊗2 there is an important  1 ⊗ 2 contribution - need to perform a new 
analysis, to calculate 2GPD of nuclei, estimate uncertainties of the nuclear 
effects.

Blok, MS ,Weidemann 2012
Summary

3x1 x2 x1 x2

A A

N N

FIG. 1: Schematic presentation of the contributions Gsingle, 1N
A +Gdouble, 1N

A to the nucleus 2GPD that enter the cross section for

double hard 4-jet production (cases I, II and IV, V discussed in the text). Two patrons of momentum fractions x1, x2 are drawn

from the same single nucleon in the amplitude (left hand side of the diagram) and complex conjugate amplitude. Depending

on whether the two nucleons arise perturbatively in a 1 ! 2 splitting from a single parton in this nucleon, or whether they are

of non-perturbative origin, we shall refer to them as Gsingle, 1N
A and Gdouble, 1N

A , respectively.

For a nuclear projectile, two additional contributions arise. These involve two partons from di↵erent nucleons in the
nucleus that interact with G

double
p (case III) or G

single
p (case VI) of the proton, respectively. These will be discussed

in section III. We have labeled both these contributions with the subscript ’direct’ to indicate that the partons with
momenta x1 and x2 are assigned to the same nucleons in amplitude and complex conjugate amplitude.

Viewing the nucleus as a bound state of many nucleons (without considering modifications to their internal structure)
is an approximation. If we relax the working hypothesis that partons can be assigned uniquely to nucleons in a nucleus,
then additional contributions are possible. First, it is possible that two nucleons of the nuclear wave function are
involved in both amplitude and complex conjugate amplitude, but that the two partons are interchanged across the
cut. We label these contributions with the subscript ’interference’. Second, it is conceivable that the two partons
taken from the nucleus belong to one nucleon in the amplitude but to two di↵erent nucleons in the complex conjugate
amplitude.

VII. G
double
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interference

VIII. G
single
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IX. 1N-2N interference

In general, such interference terms indicate the break-down of a probabilistic picture of double-parton interactions in
pA collisions in terms of an independent superposition of nucleons. By their very nature, they characterize partonic
cross-talk between di↵erent nucleons in a nucleus and may thus help to elucidate partonic nuclear structure. We note
that deviations from the simple picture of a nucleus as a superposition of nucleons are known already on the level
of single parton distributions, e.g. as EMC and nuclear shadowing e↵ects [31] . Still, nuclear parton distribution
functions are conveniently characterized by quantifying their deviations from the simple assumption of an incoherent
superposition of nucleon pdfs. Here, we follow an analogous approach for the characterization of generalized nuclear
two-parton distributions. To this end, we discuss in the following sections the di↵erent contributions to the double-hard
four jet cross section following the classification listed above.

II. SINGLE NUCLEON SCATTERING TERMS (CASES I, II AND V)

For the contributions I.-VI., the momenta of the nucleons are the same in amplitude and complex conjugate
amplitude. Therefore, if both partons belong to the same nucleon (cases I, II and V), one can integrate over the
momenta of all other nucleons and write the corresponding part of the nuclear 2GPD as
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Here, the nuclear 2GPD is the sum of the terms G
single,1N
A and G

double,1N
A , introduced before. The quantity ⇢

N
A (↵, pt)

denotes the light-cone nucleon density of the nucleus normalized as
R

⇢
N
A (↵, pt)d↵/↵ = A. The factor 1/↵ for each of

the partons reflects the fact that the number of partons between x1 and x2 should not change under Lorentz boosts.

Impulse approximation - two partons are taken from the same nucleon. Includes 
both 4 ➝4 and 3 ➝4. For x> 0.03 when no shadowing effects are present one can 
write 
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FIG. 2: Schematic presentation of the contribution G2N
A to the nucleus 2GPD that enters the cross section for the double hard

4-jet production in the terms III and VI discussed in the text. Here, the two patrons are drawn from two di↵erent nucleons

that carry longitudinal nucleon momentum fractions ↵1 and ↵2.

These extra factors 1/↵ are absorbed in the flux such that one recovers for the structure function the standard
expression F2A(x, Q

2) =
R

⇢
N
A (↵, pt)
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↵ d

2
ptF2N ( x

↵ , Q
2).

Equation (5) is written for an ensemble of A moving nucleons satisfying the momentum sum ruleR
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A (↵, pt)d↵/↵d

2
pt = A since

P
i ↵i = A. This raises the question of how well one can approximate G
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A as

the sum of distributions G
single,1N (x1, x2,

~�) + G
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~�) that are taken at rest. To address this question,
we replace ↵ = 1 + (↵ � 1) in the arguments of (1/↵
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↵ ,
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↵ , ~�), and we expand in powers of (↵ � 1). Using

momentum sum rule and baryon number sum rule, we find
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A (↵) = A � A = 0, see Ref. [32, 33]. There-
fore, corrections due to Fermi motion (i.e., corrections due to the ↵-dependence of G

1N ) arise only to second order in
(↵ � 1). The longitudinal momentum distribution of nucleons in a nucleus peaks at ↵ = 1 with small dispersion, and
therefore
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Here, the correction term involves first and second derivatives of the nucleon 2GPD with respect to x1 and x2. A
precise numerical estimate will have to constrain this term numerically. Parametrically, the correction is small. The
dominant linear dependence of G

1N
A (x1, x2,

~�) on nucleon number A translates directly into a linear dependence of
the corresponding contribution to the double hard four-jet cross section
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We have introduced an ⇡ sign in this relation to indicate the the identification of
d�pA,1N

4jet

dt̂1 dt̂2
with A times the correspond-

ing cross section in pp relies on neglecting the nuclear modification of parton distribution functions. Our discussion
up to section VI will rely on this approximation. This is justified since we consider larger Q

2 processes at moderate
x, where nuclear modifications are expected to be small. Within this approximation, the contributions to the double
hard four jet cross section in pA discussed here are exactly the contributions that one obtains from superimposing
four jet cross sections from A independent nucleon-nucleon collisions; the e↵ective transverse area S in (7) is therefore
the quantity measured in pp collisions. In section VII, we go beyond this approximation and we discuss how the
nuclear dependence of parton distribution functions can be taken into account.

III. DOUBLE NUCLEON SCATTERING TERMS (CASES III AND VI)

Figure 2 shows the 2GPD contribution G
2N
A in which the two partons belong to two di↵erent nucleons in both

amplitude and complex conjugate amplitude. This term enters the contributions III and VI of the double hard four

light-cone nucleon density matrix�pA,1N
4jet

dt̂1 dt̂2
⇡ A

d�pp
4jet

dt̂1 dt̂2
=
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Impulse approximation - two partons (or one parton in the case 
of 3 ⊗ 4) are taken from the same nucleon.  For x> 0.03 when no 
shadowing effects are absent 
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FIG. 1: Schematic presentation of the contributions Gsingle, 1N
A +Gdouble, 1N

A to the nucleus 2GPD that enter the cross section for

double hard 4-jet production (cases I, II and IV, V discussed in the text). Two patrons of momentum fractions x1, x2 are drawn

from the same single nucleon in the amplitude (left hand side of the diagram) and complex conjugate amplitude. Depending

on whether the two nucleons arise perturbatively in a 1 ! 2 splitting from a single parton in this nucleon, or whether they are

of non-perturbative origin, we shall refer to them as Gsingle, 1N
A and Gdouble, 1N

A , respectively.

For a nuclear projectile, two additional contributions arise. These involve two partons from di↵erent nucleons in the
nucleus that interact with G

double
p (case III) or G

single
p (case VI) of the proton, respectively. These will be discussed

in section III. We have labeled both these contributions with the subscript ’direct’ to indicate that the partons with
momenta x1 and x2 are assigned to the same nucleons in amplitude and complex conjugate amplitude.

Viewing the nucleus as a bound state of many nucleons (without considering modifications to their internal structure)
is an approximation. If we relax the working hypothesis that partons can be assigned uniquely to nucleons in a nucleus,
then additional contributions are possible. First, it is possible that two nucleons of the nuclear wave function are
involved in both amplitude and complex conjugate amplitude, but that the two partons are interchanged across the
cut. We label these contributions with the subscript ’interference’. Second, it is conceivable that the two partons
taken from the nucleus belong to one nucleon in the amplitude but to two di↵erent nucleons in the complex conjugate
amplitude.
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IX. 1N-2N interference

In general, such interference terms indicate the break-down of a probabilistic picture of double-parton interactions in
pA collisions in terms of an independent superposition of nucleons. By their very nature, they characterize partonic
cross-talk between di↵erent nucleons in a nucleus and may thus help to elucidate partonic nuclear structure. We note
that deviations from the simple picture of a nucleus as a superposition of nucleons are known already on the level
of single parton distributions, e.g. as EMC and nuclear shadowing e↵ects [31] . Still, nuclear parton distribution
functions are conveniently characterized by quantifying their deviations from the simple assumption of an incoherent
superposition of nucleon pdfs. Here, we follow an analogous approach for the characterization of generalized nuclear
two-parton distributions. To this end, we discuss in the following sections the di↵erent contributions to the double-hard
four jet cross section following the classification listed above.

II. SINGLE NUCLEON SCATTERING TERMS (CASES I, II AND V)

For the contributions I.-VI., the momenta of the nucleons are the same in amplitude and complex conjugate
amplitude. Therefore, if both partons belong to the same nucleon (cases I, II and V), one can integrate over the
momenta of all other nucleons and write the corresponding part of the nuclear 2GPD as
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Here, the nuclear 2GPD is the sum of the terms G
single,1N
A and G

double,1N
A , introduced before. The quantity ⇢

N
A (↵, pt)

denotes the light-cone nucleon density of the nucleus normalized as
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N
A (↵, pt)d↵/↵ = A. The factor 1/↵ for each of

the partons reflects the fact that the number of partons between x1 and x2 should not change under Lorentz boosts.

Impulse approximation - two partons are taken from the same nucleon. Includes 
both 4 ➝4 and 3 ➝4. For x> 0.03 when no shadowing effects are present one can 
write 
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FIG. 2: Schematic presentation of the contribution G2N
A to the nucleus 2GPD that enters the cross section for the double hard

4-jet production in the terms III and VI discussed in the text. Here, the two patrons are drawn from two di↵erent nucleons

that carry longitudinal nucleon momentum fractions ↵1 and ↵2.

These extra factors 1/↵ are absorbed in the flux such that one recovers for the structure function the standard
expression F2A(x, Q

2) =
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2).

Equation (5) is written for an ensemble of A moving nucleons satisfying the momentum sum ruleR
↵⇢

N
A (↵, pt)d↵/↵d

2
pt = A since

P
i ↵i = A. This raises the question of how well one can approximate G
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A as

the sum of distributions G
single,1N (x1, x2,
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~�) that are taken at rest. To address this question,
we replace ↵ = 1 + (↵ � 1) in the arguments of (1/↵
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↵ , ~�), and we expand in powers of (↵ � 1). Using

momentum sum rule and baryon number sum rule, we find
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A (↵) = A � A = 0, see Ref. [32, 33]. There-
fore, corrections due to Fermi motion (i.e., corrections due to the ↵-dependence of G

1N ) arise only to second order in
(↵ � 1). The longitudinal momentum distribution of nucleons in a nucleus peaks at ↵ = 1 with small dispersion, and
therefore
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Here, the correction term involves first and second derivatives of the nucleon 2GPD with respect to x1 and x2. A
precise numerical estimate will have to constrain this term numerically. Parametrically, the correction is small. The
dominant linear dependence of G

1N
A (x1, x2,

~�) on nucleon number A translates directly into a linear dependence of
the corresponding contribution to the double hard four-jet cross section
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We have introduced an ⇡ sign in this relation to indicate the the identification of
d�pA,1N

4jet

dt̂1 dt̂2
with A times the correspond-

ing cross section in pp relies on neglecting the nuclear modification of parton distribution functions. Our discussion
up to section VI will rely on this approximation. This is justified since we consider larger Q

2 processes at moderate
x, where nuclear modifications are expected to be small. Within this approximation, the contributions to the double
hard four jet cross section in pA discussed here are exactly the contributions that one obtains from superimposing
four jet cross sections from A independent nucleon-nucleon collisions; the e↵ective transverse area S in (7) is therefore
the quantity measured in pp collisions. In section VII, we go beyond this approximation and we discuss how the
nuclear dependence of parton distribution functions can be taken into account.

III. DOUBLE NUCLEON SCATTERING TERMS (CASES III AND VI)

Figure 2 shows the 2GPD contribution G
2N
A in which the two partons belong to two di↵erent nucleons in both

amplitude and complex conjugate amplitude. This term enters the contributions III and VI of the double hard four
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FIG. 1: Schematic presentation of the contributions Gsingle, 1N
A +Gdouble, 1N

A to the nucleus 2GPD that enter the cross section for

double hard 4-jet production (cases I, II and IV, V discussed in the text). Two patrons of momentum fractions x1, x2 are drawn

from the same single nucleon in the amplitude (left hand side of the diagram) and complex conjugate amplitude. Depending

on whether the two nucleons arise perturbatively in a 1 ! 2 splitting from a single parton in this nucleon, or whether they are

of non-perturbative origin, we shall refer to them as Gsingle, 1N
A and Gdouble, 1N

A , respectively.

For a nuclear projectile, two additional contributions arise. These involve two partons from di↵erent nucleons in the
nucleus that interact with G

double
p (case III) or G

single
p (case VI) of the proton, respectively. These will be discussed

in section III. We have labeled both these contributions with the subscript ’direct’ to indicate that the partons with
momenta x1 and x2 are assigned to the same nucleons in amplitude and complex conjugate amplitude.

Viewing the nucleus as a bound state of many nucleons (without considering modifications to their internal structure)
is an approximation. If we relax the working hypothesis that partons can be assigned uniquely to nucleons in a nucleus,
then additional contributions are possible. First, it is possible that two nucleons of the nuclear wave function are
involved in both amplitude and complex conjugate amplitude, but that the two partons are interchanged across the
cut. We label these contributions with the subscript ’interference’. Second, it is conceivable that the two partons
taken from the nucleus belong to one nucleon in the amplitude but to two di↵erent nucleons in the complex conjugate
amplitude.
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IX. 1N-2N interference

In general, such interference terms indicate the break-down of a probabilistic picture of double-parton interactions in
pA collisions in terms of an independent superposition of nucleons. By their very nature, they characterize partonic
cross-talk between di↵erent nucleons in a nucleus and may thus help to elucidate partonic nuclear structure. We note
that deviations from the simple picture of a nucleus as a superposition of nucleons are known already on the level
of single parton distributions, e.g. as EMC and nuclear shadowing e↵ects [31] . Still, nuclear parton distribution
functions are conveniently characterized by quantifying their deviations from the simple assumption of an incoherent
superposition of nucleon pdfs. Here, we follow an analogous approach for the characterization of generalized nuclear
two-parton distributions. To this end, we discuss in the following sections the di↵erent contributions to the double-hard
four jet cross section following the classification listed above.

II. SINGLE NUCLEON SCATTERING TERMS (CASES I, II AND V)

For the contributions I.-VI., the momenta of the nucleons are the same in amplitude and complex conjugate
amplitude. Therefore, if both partons belong to the same nucleon (cases I, II and V), one can integrate over the
momenta of all other nucleons and write the corresponding part of the nuclear 2GPD as
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Here, the nuclear 2GPD is the sum of the terms G
single,1N
A and G

double,1N
A , introduced before. The quantity ⇢

N
A (↵, pt)

denotes the light-cone nucleon density of the nucleus normalized as
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N
A (↵, pt)d↵/↵ = A. The factor 1/↵ for each of

the partons reflects the fact that the number of partons between x1 and x2 should not change under Lorentz boosts.

Impulse approximation - two partons are taken from the same nucleon. Includes 
both 4 ➝4 and 3 ➝4. For x> 0.03 when no shadowing effects are present one can 
write 
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FIG. 2: Schematic presentation of the contribution G2N
A to the nucleus 2GPD that enters the cross section for the double hard

4-jet production in the terms III and VI discussed in the text. Here, the two patrons are drawn from two di↵erent nucleons

that carry longitudinal nucleon momentum fractions ↵1 and ↵2.

These extra factors 1/↵ are absorbed in the flux such that one recovers for the structure function the standard
expression F2A(x, Q

2) =
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2).

Equation (5) is written for an ensemble of A moving nucleons satisfying the momentum sum ruleR
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2
pt = A since
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i ↵i = A. This raises the question of how well one can approximate G
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the sum of distributions G
single,1N (x1, x2,
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~�) that are taken at rest. To address this question,
we replace ↵ = 1 + (↵ � 1) in the arguments of (1/↵
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↵ , ~�), and we expand in powers of (↵ � 1). Using

momentum sum rule and baryon number sum rule, we find
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A (↵) = A � A = 0, see Ref. [32, 33]. There-
fore, corrections due to Fermi motion (i.e., corrections due to the ↵-dependence of G

1N ) arise only to second order in
(↵ � 1). The longitudinal momentum distribution of nucleons in a nucleus peaks at ↵ = 1 with small dispersion, and
therefore
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Here, the correction term involves first and second derivatives of the nucleon 2GPD with respect to x1 and x2. A
precise numerical estimate will have to constrain this term numerically. Parametrically, the correction is small. The
dominant linear dependence of G

1N
A (x1, x2,

~�) on nucleon number A translates directly into a linear dependence of
the corresponding contribution to the double hard four-jet cross section
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We have introduced an ⇡ sign in this relation to indicate the the identification of
d�pA,1N

4jet

dt̂1 dt̂2
with A times the correspond-

ing cross section in pp relies on neglecting the nuclear modification of parton distribution functions. Our discussion
up to section VI will rely on this approximation. This is justified since we consider larger Q

2 processes at moderate
x, where nuclear modifications are expected to be small. Within this approximation, the contributions to the double
hard four jet cross section in pA discussed here are exactly the contributions that one obtains from superimposing
four jet cross sections from A independent nucleon-nucleon collisions; the e↵ective transverse area S in (7) is therefore
the quantity measured in pp collisions. In section VII, we go beyond this approximation and we discuss how the
nuclear dependence of parton distribution functions can be taken into account.

III. DOUBLE NUCLEON SCATTERING TERMS (CASES III AND VI)

Figure 2 shows the 2GPD contribution G
2N
A in which the two partons belong to two di↵erent nucleons in both

amplitude and complex conjugate amplitude. This term enters the contributions III and VI of the double hard four
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FIG. 2: Schematic representation of the contribution G2N
A to the nucleus 2GPD that enters the cross section for the double hard

4-jet production in the terms III and VI discussed in the text. Here, the two patrons are drawn from two di↵erent nucleons

that carry longitudinal nucleon momentum fractions ↵1 and ↵2.

Equation (5) is written for an ensemble of A moving nucleons satisfying the momentum sum ruleR
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Here, the correction term involves first and second derivatives of the nucleon 2GPD with respect to x1 and x2. A
precise numerical estimate will have to constrain this term numerically. Parametrically, the correction is small. The
dominant linear dependence of G
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~�) on nucleon number A translates directly into a linear dependence of
the corresponding contribution to the double hard four-jet cross section
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We have introduced an ⇡ sign in this relation to indicate that the identification of
d�pA,1N

4jet

dt̂1 dt̂2
with A times the cor-

responding cross section in pp relies on neglecting the nuclear modification of parton distribution functions. Our
discussion up to section VI will rely on this approximation. This is justified since we consider larger Q

2 processes
at moderate x, where nuclear modifications are expected to be small. Within this approximation, the contributions
to the double hard four jet cross section in pA discussed here are exactly the contributions that one obtains from
superimposing four jet cross sections from A independent nucleon-nucleon collisions; the e↵ective transverse area S

in (7) is therefore the quantity measured in pp collisions. In section VII, we go beyond this approximation and we
discuss how the nuclear dependence of parton distribution functions can be taken into account.

III. DOUBLE NUCLEON SCATTERING TERMS (CASES III AND VI)

Figure 2 shows the 2GPD contribution G
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amplitude and complex conjugate amplitude. This term enters the contributions III and VI of the double hard four

5

jet cross section. In terms of the nuclear light cone wave function  A of the A-nucleon system, it takes the form

G
2N
A (x1, x2,

~�) = A(A � 1)
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pti

!
 

⇤
A(↵1,↵2, pt1, pt2, ....) (8)

⇥ A(↵1,↵2, pt1 + ~�, pt2 � ~�, ....)GN (x1/↵1, |~�|)GN (x2/↵2, |~�|).

Here, the transverse momentum transfer ~� is exchanged between the two active nucleons, while their light cone
fractions are conserved. The partonic momentum fractions xi drawn from the two active nucleons are then determined
via the generalized parton distributions GN (xi/↵i,

~�) of the nucleons. Since the wave function  A is normalized to
unity, the prefactor A (A � 1) results from combinatorics. The factor 1/ (↵1 ↵2) has the same origin as the factor 1/↵

2

in eq. (5).
Expanding in equation (9) the arguments of GN in powers of (↵i�1), the leading term can be written in a factorized

form involving the two-nucleon form factor F
double
A

G
2N
A (x1, x2,

~�) = A(A � 1)GN (x1, |~�|)GN (x2, |~�|) F
double
A (~�, �~�) , (9)
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⇥ A(↵1,↵2, pt1 + ~�, pt2 � ~�, ....) . (10)

As for subleading correction, we note that one can exploit the symmetry of the integrand of (9) under ↵i ! (2 � ↵i)
in the nonrelativistic limit to see that corrections to (9) are of the order (1 �↵)2, similar to the case of eq. (6). Since
the momentum fraction ↵i of all nucleons in the nucleus are close to unity, we can approximate them in the nucleus
rest frame in the non-relativistic limit, ↵i = 1 + p3i/mN . The two-nucleon form factor reads then

F
NR double
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!
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Equations (10) and (11) express the two-nucleon form factor for an arbitrary nucleus wave function, and therefore can
account for arbitrary nucleon correlations. Also, when combined with eq.(9), these expressions can account for the
finite size of nucleons as well (which is characterized by the single nucleon GPDs). We now discuss how more explicit
expressions, suitable for direct numerical evaluation, can be obtained if assumptions about nucleon correlations and
the finite size of nucleons are made.

First, we turn to the independent nucleon approximation, when the nuclear wave function is written as a product
of single nucleon wave functions. This neglects all internucleon correlations, including constraints from recoil that
arise from the kinematic �-function in (11). (These latter corrections are proportional to 1/A. A parametrically more
important source of corrections to this picture of double hard 4-jet production arises from short-range NN interaction
that are suppressed by a factor / 1/A

1/3.) One can express (11) in terms of products of Fourier transforms of
single nucleon wave functions  N (ri). Using a single nucleon density ⇢A(r) = A 

⇤
N (r) N (r), that is normalized toR

⇢A(r)d3
r = A, the two-nucleon form factor is the product of single nucleon form factors

F
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Z
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3
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1

A
⇢A(r) exp

h
i~� · ~r

i ���
2

= FA(~�)2 . (12)

Since ~� is a two-dimensional vector in the transverse plane, the single nucleon form factor can be written in terms of
the nuclear thickness function T (b) =

R1
�1 dz⇢A(z,~b) as

FA(~�) =
1

A

Z
d
2
b T (~b) exp(i~�~b) . (13)

The well-known approximate relation between the form factor and the nucleus radius RA,

F
double
A (~�, �~�) ⇡ exp


�1

3
�2

R
2
A

�
(14)

can then be obtained by expanding (13) for small �, FA(~�) ' 1 � 1
6�2

R
2
A and reexponentiating this expression.

However, the Gaussian approximation (14) somewhat underestimates the drop of FA(�2) with �2 for �2
R

2
A/6 � 1.
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Use of light cone nucleus wave functions with 
nonrelativistic reduction FS 76-81

Derived expressions allow very compact calculations both for 
heavy and light nuclei
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1+R/5 in pQCD where R is calculated from pQCD evolution σeff=σmeanf./(1+R)

6

So, while (14) is well-suited for parametric arguments, it is preferable to base numerical estimates on evaluating (13)
without further approximation.

Second, we discuss now approximations that amount to neglecting the nucleon size in comparison to the nucleus
size. According to (14), the double nucleon scattering contribution (9) to the 2GPD has its main support for small
values of �2

< O
�
3/R

2
A

�
. Parametrically, this is a factor A

�2/3 smaller than the range of �-values in which a
nucleon 2GPD has support. If one neglects the �-scale as being small, then the single GPDs become standard parton
distributions and the 2GPDs become two-parton distribution functions. In particular, the single nucleon contribution
to the 2GPD in (6) can be approximated as

G
1N
A (x1, x2,

~�) ' A GN (x1, x2,
~�) ! A fN (x1, x2) , (15)

where fN (x1, x2) is the standard two-parton distribution function. Similarly, the double nucleon contribution to the
2GPD in (9) can be approximated as

G
2N
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~�) ! fN (x1) fN (x2) F
double
A (~�, �~�) , (16)

where fN (x) are standard single parton distribution functions. Simplified expressions for the double hard four jet
cross section can then be obtained by inserting equations (15), (16) into (2).

• Case III
We consider first the 4 ! 4 contribution to the double hard 4-jet cross section in which the double nucleon
scattering term G

2N
A of the nuclear 2GPD is paired with G

double
p (x1, x2,

~�) in the proton. We obtain
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Taking the nucleus large enough to ignore the nucleon size, see eq. (16), one can neglect the ~� dependence of
Gp(x1, x2,

~�). Then one can write
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Here G
double
p (x0

1, x
0
2, 0) ⌘ fp(x0

1, x
0
2) is the double parton distribution function, and fN denotes standard nucleon

pdfs. For a simple parametric estimate, the form factor F
2
A(~�) can be viewed as a step function with support

for �2
< 3/R

2
A ⇠ A

�2/3. Therefore, the contribution (18) is O(A4/3) which makes it A
1/3-enhanced compared

to all contributions discussed in section II. This can also be seen after Fourier transform to b-space, if one recalls
that T (b) / A

1/3 for typical b ⌧ RA ⇠ A
1/3,
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Here we expressed the four jet cross section in term of full dijet di↵erential cross sections, defined through hard
parton cross sections as:

d�
pp
2jet

dt̂
(x0

1, x1) = fN (x1)fp(x
0
1)

d�̂

dt̂
(x0

1, x1) . (20)

Except for the (1 � 1/A) correction term, this form of the double hard 4-jet cross section was given first in [28].
We note that in evaluating

R
T

2(b)d2
b in (19), short-range nucleon interactions can be taken into account. For

A ⇠ 200, the resulting corrections are on the level of a few percent [35].

• Case VI
The double nucleon scattering term G

2N
A enters also in the 3 ! 4 contribution to the double hard 4-jet cross

section, where one parton of the proton splits into two partons with momentum fractions x
0
1, x

0
2,
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Since <Δ2> rN2 << 1

�4(x0
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2, x1, x2)

dt̂1dt̂2
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fp(x0
1, x

0
2)

fp(x0
1)fp(x
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dt̂1

d�2jet(x0
2, x2)
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(A� 1)

A

Z
T 2(b)d2b

| {z }
/A4/3

measures longitudinal  correlations 

includes both nonperturbative and 3 ➝ 4  contributions. Ratio ~1.2 in 3 ➝ 4 estimate Blok’s 
talk. Could be as large as 1.4 if all enhancement in pp is due to longitudinal correlations
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Correction:

O(r2N/r
2
A)
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To take into account finite nucleon size, short range NN correlations in nuclei, generate 
number of wounded nucleons in addition to the ones involved in DPS we build a new MC 
for pA which extends MC M. Alvioli and MS  build for single hard collision.
(a) Generate a A - nucleon configuration
(b) Generate impact parameter b of the nucleon relative to the center of the nucleus
(c) Generate transverse positions ρ1, ρ2  of  two partons in the nucleon involved in DPS
(d) Calculate parton density along the paths of the two partons 

T2 =

Z
d2bd2⇢1d

2⇢2 gN (⇢1, ⇢2) 
2
A(r

(k)
t , zi)

"
AX

k=1

gN (⇢1 + b� r(k)t , ⇢2 + b� r(i)t )

+
AX

i=1

f (i)
N (⇢1 + b� r(i)t ) ·

AX

j=1,j 6=i

f (k)
N (⇢2 + b� r(i)t )

3

5

Z
d2bT 2(b) !

where  fN(ρ) are the ratios of diagonal generalized parton distributions GPDs and single parton 
densities and gN(ρ1,ρ2) are the ratios of the  diagonal double generalized parton distributions (GPD) 
and corresponding single parton densities
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Pj =
g(j)N (⇢)

PA
k=1 g

(j)
N (⇢)

   Merging soft and hard:  

(a1) we assign  hard process due to the interaction of the parton of the proton with 
transverse position $\rho$ to a particular nucleon with probability 

(a2) generate wounded nucleons in Glauber like procedure and exclude 
(don’t count twice )the nucleons which were involved in hard collisions

Next Numerics
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Transverse parton distribution

x~10-2

For heavy nuclei optical approximation is a good approximation:  for p - Pb 
R
d2bT2(b)R
d2bT 2(b)

= 0.94 accounting for finite size, skin, NN correlations
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FIG. 5: Top: the centrality distribution of the number of soft collisions. Bottom: the centrality distribution

of the number of soft collisions with the double hard trigger.

10

Distribution over the number of wounded 
nucleons ν - strong suppression  of double 

scattering for  small ν
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ΣETPb distribution as a function of  ν: modeling by 
ATLAS at large negative rapidities -3 >η> -5

Transverse energy distributions in p+p collisions are typically well described 
by gamma distributions
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Figure 10: Left: Glauber-Gribov PH(�NN) distributions (see text) for⌦ = 0.55 and 1.01. Right: Glauber
and Glauber-Gribov Monte Carlo Npart distributions for 5.02 TeV p+Pb collisions obtained from 1 million
simulated events each.

collisions. For fixed Npart, the ⌃E
Pb
T distribution from the WN model can be obtained as an n-fold con-

volution, where n is equal to Npart, of the corresponding p+p A-side FCal P ET (⌃E
A
T ) distribution. This

convolution is straightforward to implement because transverse energy distributions in p+p collisions
are typically well described by gamma distributions [55]

gamma(x; k, ✓) =
1
�(k)

1
✓

✓
x

✓

◆k�1
e
�x/✓. (7)

The gamma distribution has the property that an N-fold convolution of a distribution with parameters k

and ✓ yields another gamma distribution with the same ✓ parameter and a modified k parameter, k
0 = Nk.

For a set of inelastic collisions having a distribution of Npart values, the corresponding WN dNevt/dET
distribution would be obtained by summing the gamma distributions over di↵erent Npart values weighted
by P(Npart) (as in the right panel of Figure 10).

Attempts to fit the measured ⌃E
Pb
T distribution in p+Pb collisions, using the WN-convolved gamma

distributions with k0 and ✓0 as free parameters, yield unsatisfactory results. The Glauber Npart distribution
has the wrong shape to allow even an approximate description of the distribution shown in Fig. 2. As
a result, for this analysis, a generalization of the WN model was implemented taking advantage of the
convolution properties of the gamma distribution. The generalization parameterizes the Npart dependence
of the k and ✓ parameters of the gamma distribution as

k

⇣
Npart
⌘
= k0 + k1

⇣
Npart � 2

⌘
,

✓
⇣
Npart
⌘
= ✓0 + ✓1 log

⇣
Npart � 1

⌘
. (8)

For k1 = k0/2 and ✓1 = 0, this model reduces to the WN model. The log(Npart � 1) term allows for a
possible variation in the e↵ective acceptance of the FCal due to an Npart-dependent backward shift in the
p+Pb centre-of-mass system [56]. This model provides a reasonable description of the measured ⌃E

Pb
T

distribution for both the Glauber and two Glauber-Gribov Npart distributions. Two alternative parame-
terizations for k

⇣
Npart
⌘

and ✓
⇣
Npart
⌘

were used to evaluate systematic uncertainties. One of these kept
✓ constant, ✓

⇣
Npart
⌘
= ✓0 while allowing for a quadratic dependence of k on Npart. The other included

both a quadratic term in k

⇣
Npart
⌘

and the logarithmic term in ✓
⇣
Npart
⌘

but fixed k1 = k0/2 to reduce the
number of free parameters.

To limit the number of free parameters when fitting the ⌃E
Pb
T distribution, k0 and ✓0 were obtained by

fitting the PYTHIA8 and PYTHIA6 detector-level ⌃E
A
T distributions to a gamma distribution convoluted
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gamma distribution has convolution property:
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For a set of inelastic collisions having a distribution of Npart values, the corresponding WN dNevt/dET
distribution would be obtained by summing the gamma distributions over di↵erent Npart values weighted
by P(Npart) (as in the right panel of Figure 10).

Attempts to fit the measured ⌃E
Pb
T distribution in p+Pb collisions, using the WN-convolved gamma

distributions with k0 and ✓0 as free parameters, yield unsatisfactory results. The Glauber Npart distribution
has the wrong shape to allow even an approximate description of the distribution shown in Fig. 2. As
a result, for this analysis, a generalization of the WN model was implemented taking advantage of the
convolution properties of the gamma distribution. The generalization parameterizes the Npart dependence
of the k and ✓ parameters of the gamma distribution as
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For k1 = k0/2 and ✓1 = 0, this model reduces to the WN model. The log(Npart � 1) term allows for a
possible variation in the e↵ective acceptance of the FCal due to an Npart-dependent backward shift in the
p+Pb centre-of-mass system [56]. This model provides a reasonable description of the measured ⌃E
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distribution for both the Glauber and two Glauber-Gribov Npart distributions. Two alternative parame-
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and ✓
⇣
Npart
⌘
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but fixed k1 = k0/2 to reduce the
number of free parameters.

To limit the number of free parameters when fitting the ⌃E
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T distribution, k0 and ✓0 were obtained by

fitting the PYTHIA8 and PYTHIA6 detector-level ⌃E
A
T distributions to a gamma distribution convoluted
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N-fold conv. of gamma(x,k,θ)= gamma(x, k, ✓) ⌘ 1

�(Nk)

1

✓

⇣x
✓

⌘Nk�1
e�x/✓

Note: for k = 1, gamma distribution is exponential, k < 1 is “super-
exponential”



Glauber and Glauber-Gribov analysis

•With Glauber-Gribov  
Npart distribution, the  
best fits become more WN-like 
–e.g. for Ω = 0.55, k1 = 0.9 (0.64 k0), θ1 = 0.07  
⇒Glauber-Gribov smooths out the knee in the Npart !48
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Three contributions to the final state: 
(i) the leading twist contribution
(ii) DPS due to the interaction with one nucleon 
(iii) DPS due to the interaction with two nucleons. 

(i) &  (ii)  ∝T(b) 

(iii) ∝ T2(b)

Procedure to observe DPI/ MPI in pA

Rdouble/inclusive = N(dijet+ pion/jet)/N(dijet) = c1 + c2T (b)

No need to model LT contribution



Define Ni = multiplicity of second pair of jets / high pt pion in the event 
belonging to a bin of ΣΕΤ

Main requirement for using a particular process: process is due to LT plus DPS  
that is Dependence of Ni on centrality  is due to hard scatterings.  σeff cancels 
in the ratio R. For different pt of jets, pions universal function. We use N2 to 
avoid super peripheral collisions where diffraction, etc maybe important. We 
avoid using information from pp - but can compare N1,N2  with pp.

Ri =
Ni �N2

N3 �N2

A bit more advanced procedure

!50

Centrality dependence of DPS multiplicity 
enhancement as a function of ∑ET measured 
in−3.2≥η≥−4.9 (along the nucleus direction) 
which corresponds centrality bins denoted 
in the plot.
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Conclusions II

We developed a MC  for DPS process which takes into account transverse 
geometry of hard and soft collisions  which allows to generate DPS events 
for different centrality bins.

New observable for observing DPS in pA is proposed which allows to 
observe DPS in the kinematics where DPS << LT

Hope to see the data analysis soon 

Theory: i) different models for centrality determination,  
              ii) study of LT nuclear shadowing effects.

◉

◉

◉

◉

In the 4 jet LHC kinematics MPI vs LT 2→  4 processes are enhanced in pA 
by a factor of 3 as  compared to pp case.  Minijet enhancement is  significantly 
larger.

pA dijets with  centrality trigger provide new direction for study of 3D structure of 
the nucleon as well as study of nuclear parton structure at high densities
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