Shape of the quark gluon plasma droplet reflected in the high p_{\perp} data

STEFAN STOJKU, INSTITUTE OF PHYSICS BELGRADE

IN COLLABORATION WITH: MAGDALENA DJORDJEVIC, MARKO DJORDJEVIC AND PASI HUOVINEN

■ Energy loss of high energy particles traversing QCD medium is an excellent probe of QGP properties.

- Energy loss of high energy particles traversing QCD medium is an excellent probe of QGP properties.
- High energy particles:
 - Are produced only during the initial stage of QCD matter

- Energy loss of high energy particles traversing QCD medium is an excellent probe of QGP properties.
- High energy particles:
 - Are produced only during the initial stage of QCD matter
 - Significantly interact with the QCD medium

- Energy loss of high energy particles traversing QCD medium is an excellent probe of QGP properties.
- High energy particles:
 - Are produced only during the initial stage of QCD matter
 - Significantly interact with the QCD medium
 - ► Perturbative calculations are possible

- Energy loss of high energy particles traversing QCD medium is an excellent probe of QGP properties.
- High energy particles:
 - Are produced only during the initial stage of QCD matter
 - ► Significantly interact with the QCD medium
 - ► Perturbative calculations are possible
- Theoretical predictions can be compared with a wide range of experimental data.

- Energy loss of high energy particles traversing QCD medium is an excellent probe of QGP properties.
- High energy particles:
 - Are produced only during the initial stage of QCD matter
 - ► Significantly interact with the QCD medium
 - ► Perturbative calculations are possible
- Theoretical predictions can be compared with a wide range of experimental data.
- Our state-of-the-art dynamical energy loss formalism is embedded in DREENA framework: a versatile and fully optimized suppression calculation procedure (previous talks by M. Djordjevic and D. Zigic).

■ Next goal: use high- p_{\perp} data to infer bulk properties of QGP.

■ Next goal: use high- p_{\perp} data to infer bulk properties of QGP.

■ High energy particles lose energy when they traverse QGP.

■ Next goal: use high- p_{\perp} data to infer bulk properties of QGP.

- High energy particles lose energy when they traverse QGP.
- This energy loss is sensitive to QGP properties.

■ Next goal: use high- p_{\perp} data to infer bulk properties of QGP.

- High energy particles lose energy when they traverse QGP.
- This energy loss is sensitive to QGP properties.
- We can realistically predict this energy loss.

■ Next goal: use high- p_{\perp} data to infer bulk properties of QGP.

- High energy particles lose energy when they traverse QGP.
- This energy loss is sensitive to QGP properties.
- We can realistically predict this energy loss.

- High- p_{\perp} probes are excellent tomoraphy tools.
- We can use them to infer some of the bulk QGP properties.

HOW TO INFER THE SHAPE OF THE QGP

DROPLET FROM THE DATA?

- Initial spatial anisotropy is one of the main properties of QGP.
- A major limiting factor for QGP tomography.

- Initial spatial anisotropy is one of the main properties of QGP.
- A major limiting factor for QGP tomography.
- Still not possible to directly infer the initial anisotropy from experimental data.

- Initial spatial anisotropy is one of the main properties of QGP.
- A major limiting factor for QGP tomography.
- Still not possible to directly infer the initial anisotropy from experimental data.
- Several theoretical studies (MC-Glauber, EKRT, IP-Glasma, MC-KLN) infer the initial anisotropy; lead to notably different predictions.

- Initial spatial anisotropy is one of the main properties of QGP.
- A major limiting factor for QGP tomography.
- Still not possible to directly infer the initial anisotropy from experimental data.
- Several theoretical studies (MC-Glauber, EKRT, IP-Glasma, MC-KLN) infer the initial anisotropy; lead to notably different predictions.

Alternative approaches for inferring anisotropy are necessary!

- Initial spatial anisotropy is one of the main properties of QGP.
- A major limiting factor for QGP tomography.
- Still not possible to directly infer the initial anisotropy from experimental data.
- Several theoretical studies (MC-Glauber, EKRT, IP-Glasma, MC-KLN) infer the initial anisotropy; lead to notably different predictions.

- Alternative approaches for inferring anisotropy are necessary!
- Optimally, these should be complementary to existing predictions.

- Initial spatial anisotropy is one of the main properties of QGP.
- A major limiting factor for QGP tomography.
- Still not possible to directly infer the initial anisotropy from experimental data.
- Several theoretical studies (MC-Glauber, EKRT, IP-Glasma, MC-KLN) infer the initial anisotropy; lead to notably different predictions.

- Alternative approaches for inferring anisotropy are necessary!
- Optimally, these should be complementary to existing predictions.
- Based on a method that is fundamentally different than models of early stages of QCD matter.

A NOVEL APPROACH TO EXTRACT THE INITIAL STATE ANISOTROPY

■ Inference from already available high- p_{\perp} R_{AA} and v_2 measurements (to be measured with higher precision in the future).

A NOVEL APPROACH TO EXTRACT THE INITIAL STATE ANISOTROPY

- Inference from already available high- p_{\perp} R_{AA} and v_2 measurements (to be measured with higher precision in the future).
- Use experimental data (rather than calculations which rely on early stages of QCD matter).
- Exploit information from interactions of rare high- p_{\perp} partons with QCD medium.

- Inference from already available high- p_{\perp} R_{AA} and v_2 measurements (to be measured with higher precision in the future).
- Use experimental data (rather than calculations which rely on early stages of QCD matter).
- Exploit information from interactions of rare high- p_{\perp} partons with QCD medium.
- Advances the applicability of high- p_{\perp} data.
- Up to now, this data was mainly used to study the jet-medium interacions, rather than inferring bulk QGP parameters, such as spatial anisotropy.

What is an appropriate observable?

The initial state anisotropy is quantified in terms of eccentricity parameter ϵ_2 :

$$\epsilon_{2} = \frac{\langle y^{2} - x^{2} \rangle}{\langle y^{2} + x^{2} \rangle} = \frac{\int dx \, dy \, (y^{2} - x^{2}) \, \rho(x, y)}{\int dx \, dy \, (y^{2} + x^{2}) \, \rho(x, y)},$$

where $\rho(x,y)$ is the initial density distribution of the QGP droplet.

M. Djordjevic, S. Stojku, M. Djordjevic and P. Huovinen, Phys.Rev. C Rapid Commun. 100, 031901 (2019).

What is an appropriate observable?

The initial state anisotropy is quantified in terms of eccentricity parameter ϵ_2 :

$$\epsilon_{2} = \frac{\langle y^{2} - x^{2} \rangle}{\langle y^{2} + x^{2} \rangle} = \frac{\int dx \, dy \, (y^{2} - x^{2}) \, \rho(x, y)}{\int dx \, dy \, (y^{2} + x^{2}) \, \rho(x, y)},$$

where $\rho(x,y)$ is the initial density distribution of the QGP droplet. M. Djordjevic, S. Stojku, M. Djordjevic and P. Huovinen, Phys. Rev. C Rapid Commun. 100, 031901 (2019).

- High- p_{\perp} v_2 is sensitive to both the anisotropy and the size of the system.
- \blacksquare R_{AA} is sensitive only to the size of the system.

What is an appropriate observable?

The initial state anisotropy is quantified in terms of eccentricity parameter ϵ_2 :

$$\epsilon_{2} = \frac{\left\langle y^{2} - x^{2} \right\rangle}{\left\langle y^{2} + x^{2} \right\rangle} = \frac{\int dx \, dy \left(y^{2} - x^{2} \right) \rho(x, y)}{\int dx \, dy \left(y^{2} + x^{2} \right) \rho(x, y)},$$

where $\rho(x,y)$ is the initial density distribution of the QGP droplet. M. Diordievic. S. Stoiku. M. Diordievic and P. Huovinen. Phys. Rev. C Rapid Commun. 100. 031901 (2019).

- High- p_{\perp} v_2 is sensitive to both the anisotropy and the size of the system.
- \blacksquare R_{AA} is sensitive only to the size of the system.

Can we extract eccentricity from high- p_{\perp} R_{AA} and v_2 ?

ANISOTROPY OBSERVABLE

Use scaling arguments for high- p_{\perp}

 $\Delta E/E \approx \langle T \rangle^a \langle L \rangle^b$, where within our model $a \approx$ 1.2, $b \approx$ 1.4 D. Zigic et al., JPG 46, OB5101 (2019); M. Djordjevic and M. Djordjevic, PRC 92, 024918 (2015)

ANISOTROPY OBSERVABLE

Use scaling arguments for high- p_{\perp}

 $\Delta E/E \approx \langle T \rangle^a \langle L \rangle^b$, where within our model $a \approx$ 1.2, $b \approx$ 1.4

D. Zigic et al., JPG 46, 085101 (2019); M. Djordjevic and M. Djordjevic, PRC 92, 024918 (2015)

$$R_{AA}pprox 1-\xi\langle T
angle^a\langle L
angle^b$$

1 -
$$R_{AA} \approx \xi \langle T \rangle^a \langle L \rangle^b$$

$$V_2 pprox rac{1}{2} rac{R_{AA}^{in} - R_{AA}^{out}}{R_{AA}^{in} + R_{AA}^{out}} \implies$$

$$V_2 \approx \xi \langle T \rangle^a \langle L \rangle^b \left(\frac{b}{2} \frac{\Delta L}{\langle L \rangle} - \frac{a}{2} \frac{\Delta T}{\langle T \rangle} \right)$$

ANISOTROPY OBSERVABLE

Use scaling arguments for high- p_{\perp}

 $\Delta E/E \approx \langle T \rangle^a \langle L \rangle^b$, where within our model $a \approx$ 1.2, $b \approx$ 1.4

D. Zigic et al., JPG 46, 085101 (2019); M. Djordjevic and M. Djordjevic, PRC 92, 024918 (2015)

$$R_{AA}pprox 1-\xi\langle T
angle^a\langle L
angle^b$$
1 - $R_{AA}pprox \xi\langle T
angle^a\langle L
angle^b$

$$V_2 pprox rac{1}{2} rac{R_{AA}^{in} - R_{AA}^{out}}{R_{AA}^{in} + R_{AA}^{out}} \implies$$

$$V_2 pprox \xi \langle T \rangle^a \langle L \rangle^b \left(rac{b}{2} rac{\Delta L}{\langle L \rangle} - rac{a}{2} rac{\Delta T}{\langle T \rangle}
ight)$$

$$\left| \frac{v_2}{1 - R_{AA}} \approx \left(\frac{b}{2} \frac{\Delta L}{\langle L \rangle} - \frac{a}{2} \frac{\Delta T}{\langle T \rangle} \right) \right|$$

This ratio carries information on the asymmetry of the system, but through both spatial and temperature variables.

M. Djordjevic, S. Stojku, M. Djordjevic and P. Huovinen, Phys.Rev. C Rapid Commun. 100, 031901 (2019).

ANISOTROPY PARAMETER ς

$$rac{v_2}{1-R_{AA}}pprox \left(rac{b}{2}rac{\Delta L}{\langle L
angle}-rac{a}{2}rac{\Delta T}{\langle T
angle}
ight) \implies$$

7 | 13

ANISOTROPY PARAMETER ς

0.02

0.04

 $\Delta T / \langle T \rangle$

0.06

$$\frac{v_2}{1-R_{AA}} \approx \left(\frac{b}{2}\frac{\Delta L}{\langle L \rangle} - \frac{a}{2}\frac{\Delta T}{\langle T \rangle}\right) \implies$$

$$\boxed{\frac{v_2}{1 - R_{AA}} \approx \frac{1}{2} \left(b - \frac{a}{c} \right) \frac{\langle L_{out} \rangle - \langle L_{in} \rangle}{\langle L_{out} \rangle + \langle L_{in} \rangle} \approx 0.57\varsigma}$$

$$\varsigma = \frac{\Delta L}{\langle L \rangle} = \frac{\langle L_{out} \rangle - \langle L_{in} \rangle}{\langle L_{out} \rangle + \langle L_{in} \rangle}$$

ANISOTROPY PARAMETER ς

$$\frac{v_2}{1-R_{AA}} \approx \left(\frac{b}{2}\frac{\Delta L}{\langle L \rangle} - \frac{a}{2}\frac{\Delta T}{\langle T \rangle}\right) \implies$$

$$\boxed{\frac{V_2}{1 - R_{AA}} \approx \frac{1}{2} \left(b - \frac{a}{c} \right) \frac{\langle L_{out} \rangle - \langle L_{in} \rangle}{\langle L_{out} \rangle + \langle L_{in} \rangle} \approx 0.57\varsigma}$$

- At high p_{\perp} , v_2 over $1 R_{AA}$ ratio is dictated solely by the geometry of the initial fireball!
- Anisotropy parameter ς follows directly from high p_{\perp} experimental data!

M. Djordjevic, S. Stojku, M. Djordjevic and P. Huovinen, Phys.Rev. C Rapid Commun. 100, 031901 (2019).

■ Solid red line: analytically derived asymptote.

- Solid red line: analytically derived asymptote.
- For each centrality and from $p_{\perp} \approx 20 \text{GeV}$, $v_2/(1-R_{AA})$ does not depend on p_{\perp} , but is determined by the geometry of the system.

- Solid red line: analytically derived asymptote.
- For each centrality and from $p_{\perp} \approx 20 \text{GeV}$, $v_2/(1-R_{AA})$ does not depend on p_{\perp} , but is determined by the geometry of the system.
- The experimental data from ALICE, CMS and ATLAS show the same tendency, though the error bars are still large.
- In the LHC Run 3 the error bars should be significantly reduced.

- $v_2/(1-R_{AA})$ indeed carries the information about the system's anisotropy.
- It can be simply (from the straight line high- p_{\perp} limit) and robustly (in the same way for each centrality) inferred from experimental data.

ECCENTRICITY

Anisotropy parameter ϵ is not the commonly used anisotropy parameter ϵ_2 . To facilitate comparison with ϵ_2 values in the literature, we define:

$$\epsilon_{2L} = \frac{\langle L_{out} \rangle^2 - \langle L_{in} \rangle^2}{\langle L_{out} \rangle^2 + \langle L_{in} \rangle^2} = \frac{2\varsigma}{1 + \varsigma^2} \implies$$

M. Djordjevic, S. Stojku, M. Djordjevic and P. Huovinen, Phys.Rev. C Rapid Commun. 100, 031901 (2019).

ECCENTRICITY

Anisotropy parameter ϵ_2 is not the commonly used anisotropy parameter ϵ_2 . To facilitate comparison with ϵ_2 values in the literature, we define:

$$\epsilon_{2L} = \frac{\langle L_{out} \rangle^2 - \langle L_{in} \rangle^2}{\langle L_{out} \rangle^2 + \langle L_{in} \rangle^2} = \frac{2\varsigma}{1 + \varsigma^2} \implies$$

M. Djordjevic, S. Stojku, M. Djordjevic and P. Huovinen, Phys.Rev. C Rapid Commun. 100, 031901 (2019).

 $\epsilon_{\rm 2L}$ is in an excellent agreement with $\epsilon_{\rm 2}$ which we started from.

 $V_2/(1-R_{AA})$ provides a reliable and robust procedure to recover initial state anisotropy.

ECCENTRICITY

Anisotropy parameter ϵ is not the commonly used anisotropy parameter ϵ_2 . To facilitate comparison with ϵ_2 values in the literature, we define:

$$\epsilon_{2L} = \frac{\langle L_{out} \rangle^2 - \langle L_{in} \rangle^2}{\langle L_{out} \rangle^2 + \langle L_{in} \rangle^2} = \frac{2\varsigma}{1 + \varsigma^2} \implies$$

M. Djordjevic, S. Stojku, M. Djordjevic and P. Huovinen, Phys.Rev. C Rapid Commun. 100, 031901 (2019).

 ϵ_{2L} is in an excellent agreement with ϵ_2 which we started from.

 $V_2/(1-R_{AA})$ provides a reliable and robust procedure to recover initial state anisotropy.

The width of our ϵ_{2L} band is smaller than the difference in ϵ_2 values obtained by using different models.

Resolving power to distinguish between different initial state models, although it may not be possible to separate the finer details of more sophisticated models.

■ High- p_{\perp} theory and data - traditionally used to explore high- p_{\perp} parton interactions with QGP, while QGP properties are explored through low- p_{\perp} data and corresponding models.

11

- High- p_{\perp} theory and data traditionally used to explore high- p_{\perp} parton interactions with QGP, while QGP properties are explored through low- p_{\perp} data and corresponding models.
- With a proper description of high- p_{\perp} medium interactions, high- p_{\perp} probes can become powerful tomography tools, as they are sensitive to global QGP properties. We showed that here in the case of spatial anisotropy of QCD matter.

11

- High- p_{\perp} theory and data traditionally used to explore high- p_{\perp} parton interactions with QGP, while QGP properties are explored through low- p_{\perp} data and corresponding models.
- With a proper description of high- p_{\perp} medium interactions, high- p_{\perp} probes can become powerful tomography tools, as they are sensitive to global QGP properties. We showed that here in the case of spatial anisotropy of QCD matter.
- By using our dynamical energy loss formalism, we showed that a (modified) ratio of R_{AA} and v_2 presents a reliable and robust observable for straightforward extraction of initial state anisotropy.

11

- High- p_{\perp} theory and data traditionally used to explore high- p_{\perp} parton interactions with QGP, while QGP properties are explored through low- p_{\perp} data and corresponding models.
- With a proper description of high- p_{\perp} medium interactions, high- p_{\perp} probes can become powerful tomography tools, as they are sensitive to global QGP properties. We showed that here in the case of spatial anisotropy of QCD matter.
- By using our dynamical energy loss formalism, we showed that a (modified) ratio of R_{AA} and v_2 presents a reliable and robust observable for straightforward extraction of initial state anisotropy.
- It will be possible to infer anisotropy directly from LHC Run 3 data: an important constraint to models describing the early stages of QGP formation. This demonstates the synergy of more common approaches for inferring QGP properties with high- p_{\perp} theory and data.

ACKNOWLEDGEMENTS

Thank you for your attention!

$v_2/(1-R_{AA})$ with full 3+1D hydro DREENA

Flatness still observed. Further research is ongoing.