Győrfi András: Az úton (On the road)

"Thermal Photons" from HI Collisions

Axel Drees SBU Budapest, Hungary 12/6/2019

- Introduction
- Thermal Photon Puzzle
 - Large Yields
 - Large Anisotropies

$$dN_{ch}^{5/4}$$

- Scaling with $\frac{dNcn}{d\eta}$
- Outlook

ZIMÁNYI SCHOOL'19

Thermal Radiation from Hot & Dense Matter

Black Body Radiation

- Real or virtual photons
- Sensitive to temperature & density Boltzmann dist. with avg. inv. slope ∝ T, Photon flux ∝ T⁴
- Hubble expansion of matter
 - \rightarrow temperature drops
 - \rightarrow Doppler shift: γ photons emitted from moving matter
 - → Radial expansion anisotropic (elliptic flow): modulation on Doppler shift

High yield \rightarrow high T \rightarrow early emission Large Doppler shift \rightarrow late emission

Microscopic view of thermal radiation

π

D

π

Photon Measurements with PHENIX

Direct Photons p+p and Au+Au at \sqrt{s_{NN}} = 200 GeV

- **Direct photon yield well** established
 - pp consistent with pQCD
 - AuAu follows N_{coll} scaled pp above 3-4 GeV
 - Significant excess below **3 GeV in AuAu**
 - **Excess has nearly** exponential shape with $T_{eff} \sim 240 \text{ MeV}$

Large direct photon yield $T_{ini} > 240 \text{ MeV} > T_c$

(Need to consider exploding source!)

Anisotropic Emission of Direct Photons

PHENIX: Phys. Rev. C 91 064904 (2015)

Anisotropic emission of direct photons with large v₂ and v₃

Direct Photon Puzzle

PHENIX: Phys. Rev. C 91 064904 (2015)

Many model calculations and consideration*:

- More traditional, large contribution from hadron gas
 - Thermal rate in QGP & HG, with hydro (viscous/non viscous) or blastwave evolution
 - Microscopic transport (PHSD) ۵.
- New early contributions
 - **Non-equilibrium effects** (glasma, etc.)
 - **Enhanced thermal emission in** large **B**-fields
 - Modified formation time and initial conditions
- New effects at phase boundary
 - **Extended** emission
 - **Emission at hadronization**

**list not complete*

Large yield and v_n challenge understanding of sources, emission rates and space-time evolution

7

ALICE Direct Photon Results

ALICE: Phys. Lett. B754 (2016) 235

Stony Brook University

ALICE Pb+Pb 2.76 TeV

- Large yield of direct photons
- Anisotropic emission
- Challenge to reproduce quantitatively with theoretical models

ALICE and PHENIX results consistent

ALICE: Phys. Lett. B789 (2019) 308

PHENIX – STAR Direct Photon Comparison

STAR: Phys. Lett. B770 (2017) 451

PHENIX $\gamma \rightarrow e^+e^-$: Phys. Rev. C91 (2015) 064904 γ*: Phys. Rev. Lett. 104 (2010) 132301

STAR data significantly lower than PHENIX data

STAR - PHENIX discrepancy remains unresolved

New Experimental Data from Different Systems

Low p_T direct photons in all systems

Analysis of 2014 Au+Au PHENIX Data

New independent analysis of direct photon emission from data set with 10x statistics

New Insight: Vary System Size

- Vary size: collision system, centrality, \sqrt{s}
- Measure system size via $\frac{dN_{ch}}{d\eta}$ or similar
 - $\frac{dN_{ch}}{d\eta}$ is an experimental observable
 - At fixed $\sqrt{s} \quad \frac{dN_{ch}}{d\eta} \sim N_{part} \sim Volume (V)$
 - Varying $\sqrt{s} \quad \frac{dN_{ch}}{d\eta} \sim \text{ energy density } \times \mathbf{V}$

- Discovery of scaling behavior
 - Connects bulk particle production and hard scattering processes

$$N_{coll} = \frac{1}{SY(\sqrt{s})} \left(\frac{dN_{ch}}{d\eta}\right)^{5/4}$$

Compare data as function of $\frac{dN_{ch}}{d\eta}$

Integrated Low p_T > 1 GeV/c Photon Yield

Universal scaling behavior! Suggest similar source of low p_T direct photons!

Integrated Low p_T > 1.5 GeV/c Photon Yield

Universal scaling behavior with power independent of p_T!

Models for Thermal Photon Emission

Models of thermal photon emission show similar scaling behavior

- Small dependence on energy
- Significant p_T dependence
- Is large than power observed experimentally

$$\frac{dN_{\gamma}}{dy} = k \left(\frac{dN_{ch}}{d\eta}\right)^{\alpha(pT)}$$

Thermal photons: $\alpha(p_T) \sim 1.43 \rightarrow 1.51$ for pT > 1 $\rightarrow 1.5$ GeV

Universal Scaling

$$\frac{dN_{\gamma}}{dy} = k \left(\frac{dN_{ch}}{d\eta}\right)^{\alpha}$$

Data: universal scaling

- from 39 GeV to 2.76 TeV
- independent of centrality
- independent of p_T cut

• Thermal Model:

- N_{coll} × pp: same scaling at 0.1 of yield
- Apparent transition

for $dN_{ch}/d\eta \sim 5$ to 30

Observed system size dependence not expected for thermal radiation

Axel Drees

"Thermal Photon Puzzle"

What is the source of low p_T direct photons?

- Large yield of low p_T direct photons
- Large Anisotropic Emission
- Universal Scaling with $\alpha \sim 5/4$
- Challenging to explain by thermal source

Outlook

Relativistic nuclear collisions: The emergence of a "standard picture"

Outlook

Outlook from PHENIX

- Small system data sets
 - p-Au, ³He-Au, d-Au
 - "engineer" collision geometry
 - Search for onset of QGP

- High statistics large systems
 - Au-Au, Cu-Au
 - More precise measurements
 - New insights into thermal photon puzzle

Backup

Undated p+p Reference for Direct Photons

Fitting function

$$\frac{dN}{dy} = a \left(1 + \frac{p_T^2}{b}\right)^c$$

а	b	с
6.74×10 ³	2.10	-3.30

pQCD inspired function

Stony Brook University

- The fit <1GeV is motivated by Drell-Yan measurement [Ito, et al, PRD23, 604 (1981)]
- Systematic errors include the fit errors, different functional forms

Axel Drees

PHENIX Direct Photons from p+Au

Axel Drees

p_T Dependence of Integrated Direct Photon

Integrated Photon Yield p_T > 5 GeV/c

PHENIX: Phys. Rev. Lett. 123 (2019) 22301

Pb+Pb same scaling but 30% above Ncoll x pQCD p+p

Comment on p_T > **5 GeV ALICE data**

Focus on low p_T Region

- Similar inverse slope
 - $T_{eff} \sim 270$ MeV for all spectra 0.9 < pT < 2.1 GeV/c
 - Independent of centrality and \sqrt{s} from 39 to 2760 GeV

More Detailed Look at Low p_T Range

STAR Dileptons

