Hydrodynamization, hydrodynamic attractors and all that — an overview of the field

Michal P. Heller

aei.mpg.de/GQFI

1610.02023: lecture notes emphasizing the holographic component

1707.02282: review emphasizing the hydrodynamic component

state of the field: www.birs.ca/events/2019/5-day-workshops/19w5048

Introduction & motivation

// in this lecture the vast majority of results concern conformally-invariant theories without a set of dim-less scales (~ strong coupling) //

Motivation: hydrodynamic simulations for HIC

Generic energy density at the moment hydrodynamics simulation starts: 1009.3244 by Schenke, Jeon & Gale

Simulations like this match the data, however, they apply hydrodynamics in the

regime of large gradients:
$$\frac{\Delta \mathcal{E}}{\Delta d} \times \left(\frac{\mathcal{E}_{\rm av}}{(\frac{1}{\mathcal{E}_{\rm av}/10})^{1/4}}\right)^{-1} \approx 1$$
. Does it even make sense?

Hydrodynamization

Ab initio studies in holography and later studies in other models show that viscous hydro can work even when deviations from local equilibrium are large:

0906.4426, 1011.3562 by Chesler & Yaffe; 1103.3452 with Janik & Witaszczyk

sample n-eq states in:

EKT with $\eta/s = 0.624$

RTA with $\eta/s = 0.624$

viscous hydro prediction:

$$\frac{\Delta \mathcal{P}}{\mathcal{E}/3} = \frac{2}{\pi} \tilde{w}^{-1}$$

plot from 1609.04803v2 with Kurkela, Spalinski & Svensson

Preview: hydrodynamic attractors

Viscous hydrodynamics works* despite huge gradients in the system: 0906.4426, 1011.3562 by Chesler & Yaffe; 1103.3452 with Janik & Witaszczyk

plot from 1609.04803v2 with Kurkela, Spalinski & Svensson

Relativistic hydrodynamics - textbook definition

hydrodynamics is

an EFT of the slow (?) evolution of conserved currents in collective media close to equilibrium (?)

DOFs: always local energy density ϵ and local flow velocity u^{μ} $(u_{\nu}u^{\nu}=-1)$

EOMs: conservation eqns $\nabla_{\mu}\langle T^{\mu\nu}\rangle = 0$ for $\langle T^{\mu\nu}\rangle$ expanded in gradients

Here we assume Landau frame, c.f. 1907.08191 by Kovtun / 1708.06255 by Bemfica et al.

Hydrodynamic & transient modes

Theories of viscous hydrodynamics

The crucial subtlety: $\nabla_{\mu} \Big(\epsilon u^{\mu} u^{\nu} + P(\epsilon) \{ g^{\mu\nu} + u^{\mu} u^{\nu} \} \Big) - \eta(\epsilon) \sigma^{\mu\nu} + \dots \Big) = 0$ does not have a well-posed initial value problem \longrightarrow hydrodynamic theories (there is a brand new approach that deals with the problem somewhat differently, see 1907.08191 by Kovtun and 1708.06255 by Bemfica, Disconzi & Noronha)

Overall idea: make $\pi^{\mu\nu}$ obey an independent PDE ensuring its \mathbf{n} to $-\eta\,\sigma^{\mu\nu}$

$$(\tau_{\pi}u^{\alpha}\mathcal{D}_{\alpha}+1)\left[\pi^{\mu\nu}-(-\eta\,\sigma^{\mu\nu})\right]=0 \longrightarrow \pi^{\mu\nu}=-\eta\,\sigma^{\mu\nu}-\tau_{\pi}\,u^{\alpha}\mathcal{D}_{\alpha}\,\pi^{\mu\nu}-\tau_{\pi}\,u^{\alpha}\mathcal{D}_{\alpha}\,(\eta\,\sigma^{\mu\nu})$$
decay timescale

Müller 1967, Israel 1976, Israel & Stewart 1976

New incarnation: 07 | 2.245 | by Baier, Romatschke, Son, Starinets & Stephanov

$$\pi^{\mu\nu} = -\eta \sigma^{\mu\nu} - \tau_{\pi} u^{\alpha} \mathcal{D}_{\alpha} \pi^{\mu\nu} + \lambda_{1} \pi^{\langle \mu}{}_{\alpha} \pi^{\nu \rangle \alpha} + \lambda_{2} \pi^{\langle \mu}{}_{\alpha} \Omega^{\nu \rangle \alpha} + \lambda_{3} \Omega^{\langle \mu}{}_{\alpha} \Omega^{\nu \rangle \alpha}$$

Modes in BRSSS theory

Mode = solution of linearized equations of finite-T state without any sources

Technical issue: tensor perturbs. → channels (here and later sound channel):

Assuming momentum along x³ direction $e^{-i\,\omega\,x^0+i\,k\,x^3}$: δT , δu^3 & $\delta\pi^{33}$

 $Re(\omega)/T$

Modes in Einstein-Hilbert holography = QNMs hep-th/0506184 by Kovtun & Starinets vanishing at the boundary $ds^2 = \frac{L^2}{u^2} \left\{ -2dx^0du - \left(1 - \pi^4 T^4 u^4\right) \left(x^0\right)^2 + d\vec{x}^2 \right\} + \delta g_{ab}(u) \, e^{-i\,\omega\,x^0 + i\,k\,x^3}$

ingoing (regular) at the horizon

Hydrodynamics at large orders

here focus on 1503.07514 with Spalinski

see also 1302.0697 with Janik & Witaszczyk for an earlier work

Boost-invariant flow Bjorken 1982

const x^0 slice:

Boost-invariance: in
$$(\tau \equiv \sqrt{x_0^2 - x_1^2}, \quad y \equiv \operatorname{arctanh} \frac{x_1}{x_0}, x_2, x_3)$$
 coords no y -dep

In a CFT:
$$\langle T^{\mu}_{\ \nu} \rangle = \mathrm{diag} \left\{ -\mathcal{E}(\tau), -\mathcal{E} - \tau \, \dot{\mathcal{E}}, \, \mathcal{E} + \frac{1}{2} \tau \, \dot{\mathcal{E}}, \, \mathcal{E} + \frac{1}{2} \tau \, \dot{\mathcal{E}} \right\}$$

$$\langle T_2^2 \rangle - \langle T_y^y \rangle_{\mathbb{N}}$$

 $\langle T_2^2\rangle - \langle T_y^y\rangle$ and via scale-invariance $\frac{\Delta\mathcal{P}}{\mathcal{E}/3} \equiv \mathcal{A}$ is a function of $w \equiv \tau \, T$

Gradient expansion: series in $\frac{1}{-}$

1103.3452 with Janik & Witaszczyk

Large order gradient expansion: BRSSS

1503.07514 with Spalinski

conservation (always the same) ——

$$\frac{\tau}{w}\frac{dw}{d\tau} = \frac{2}{3} + \frac{1}{18}\mathcal{A}$$

$$\pi^{\mu\nu} = -\eta \sigma^{\mu\nu} - \tau_{\pi} u^{\alpha} \mathcal{D}_{\alpha} \pi^{\mu\nu} +$$

$$+ \lambda_{1} \pi^{\langle \mu}{}_{\alpha} \pi^{\nu \rangle \alpha} + \lambda_{2} \pi^{\langle \mu}{}_{\alpha} \Omega^{\nu \rangle \alpha} + \lambda_{3} \Omega^{\langle \mu}{}_{\alpha} \Omega^{\nu \rangle \alpha} \longrightarrow$$

$$C_{\tau_{\pi}} w \left(1 + \frac{1}{12} \mathcal{A}\right) \mathcal{A}' + \left(\frac{1}{3} C_{\tau_{\pi}} + \frac{1}{8} \frac{C_{\lambda_{1}}}{C_{\eta}} w\right) \mathcal{A}^{2} + \frac{3}{2} w \mathcal{A} - 12 C_{\eta} = 0$$

$$\left(\eta = C_{\eta} \mathcal{S}, \quad \tau_{\pi} = \frac{C_{\tau_{\pi}}}{T}, \quad \lambda_{1} = C_{\lambda_{1}} \frac{\eta}{T}\right)$$

$$\mathcal{A}(w)pprox\sum_{n=1}^{\infty}rac{a_n}{w^n}=8\,C_\eta\,rac{1}{w}+rac{16}{3}\,C_\eta\,(C_{ au_\pi}-C_{\lambda_1})\,rac{1}{w^2}+\dots$$
 (note that a_n 's do not depend on ini. cond.)

Divergent series: $a_n \sim n!$

Transseries and resurgence 1503.07514 with Spalinski

$$\mathcal{A}(w) \approx \sum_{n=1}^{\infty} \frac{a_n}{w^n}$$
 Borel trafo. $BA(\xi) = \sum_{n=1}^{\infty} \frac{a_n}{n!} \, \xi^n \approx \frac{b_0 + \ldots + b_{100} \, \xi^{100}}{c_0 + \ldots + c_{100} \, \xi^{100}}$

Borel (re)summation:

$$\left(\int_{\mathcal{C}_{1}} d\xi - \int_{\mathcal{C}_{2}} d\xi\right) \left[w e^{-w \xi} B \mathcal{A}(\xi)\right]$$

$$\sim e^{-\left(\frac{3}{2} \frac{1}{C_{\tau_{\pi}}}\right)} w w^{\frac{C_{\eta^{-2}C_{\lambda_{1}}}}{C_{\tau_{\pi}}}} \dots$$

Ambiguity in resummation ~ transient mode

nonlinear effects \sim resum. ambig. + ini. cond. \sim resum. ambig. + ini. cond. Transseries: $\mathcal{A}(w) = \sum_{j=0}^{\infty} \sigma^j e^{-j\,A\,w}\,w^{j\,\beta}\,\Phi_{(j)}(w)$ \leftarrow \sim I/w expansions

Resurgence: transseries yields an unambiguous answer up to I real int. const.

Attractors

1503.07514 with Spalinski

1704.08699 by Romatschke

... ~ 15 other distinct studies of attractors ...

1907.08101 by Kurkela, van der Schee, Wiedemann & Wu

1912.xxxxx with Jefferson, Spalinski & Svensson, see https://bit.ly/2DCt0bl

(BRSSS) resummed hydrodynamics

1503.07514 with Spalinski

Idea: resummed / far-from-equilibrium hydrodynamics = attractor solutions

BRSSS:

$$C_{\tau_{\pi}} w \left(1 + \frac{1}{12} A\right) A' + \left(\frac{1}{3} C_{\tau_{\pi}} + \frac{1}{8} \frac{C_{\lambda_{1}}}{C_{\eta}} w\right) A^{2} + \frac{3}{2} w A - 12 C_{\eta} = 0$$

"slow roll" approximation reveals an attractor solution

One can also approx. resum transseries:

$$\mathcal{A}(w) \approx \sum_{j=0}^{2} \sigma^{j} e^{-j A w} w^{j \beta} \Phi_{(j)}(w)$$

Requires 3 Borel summations

Attractor in kinetic theory and holography

1704.08699 by Romatschke (figure imported from the arXiv ver)

Idea: use the slow roll approximation to generate attractors in other theories

Longitudinal expansion important for the initial memory loss of solutions 1907.08101 by Kurkela, van der Schee, Wiedemann & Wu

Note: centre and right are projections from infinitely-dimensional phase space

Executive summary

Executive summary

What seems to control the applicability of hydrodynamics is not the gradient expansion itself, but what comes on top of it — expansion & transients

As a result, applying hydro to HIC early on is not a priori crazy

Hydrodynamic attractors = intermediate-to-late time universalities