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Outline
Introduction 
- HIC and HBT method 

- Correlation femtoscopy: method, frames, correlations, measures, … 

-    RHIC / STAR 

  

Results 
a) Strong interactions between (anti)baryons 

b) Femtoscopy of strange baryons 

c) Beam Energy Scan Program (BES): 

- identical pion femtoscopy 

- geometry: centrality dependencies 

            energy dependencies 

            system (of pair) dependencies 

- dynamics: centrality dependencies 

            energy dependencies 

            system (of pair) dependencies 

Conclusions 
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Introduction
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Heavy-Ion collision and HBT method

long - beam axis 
out  - pair transverse p 
side - perpendicular to  
         out and long

Plot borrowed  
from Mike Lisa
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Correlation femtoscopy

Size: ~10-15 m (fm) 
Time: ~10-23 s 

Impossible  
to measure directly!
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Correlation femtoscopy

Size: ~10-15 m (fm) 
Time: ~10-23 s 

Impossible  
to measure directly!

Femtoscopy (HIC) inspired by 
Hanbury Brown and Twiss 
i n t e r f e r o m e t r y m e t h o d 
(Astronomy) 

but! 
- different scales, 
- different measured quantities 
- different determined quantities
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Femtoscopic correlations
 - space-time sizes and dynamics  

(can not be measured directly)  
Close velocity correlations  
(HBT + FSI)  

 - momenta and momentum difference  
(can be measured directly) 

x1, x2
→

←
p1, p2
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 - space-time sizes and dynamics  
(can not be measured directly)  

Close velocity correlations  
(HBT + FSI)  

 - momenta and momentum difference  
(can be measured directly) 

Single- and two-particle distributions 

x1, x2
→

←
p1, p2

P1( p)= E
dN
d3 p

= ∫ d4 x S (x , p)

S(x,p) – emission function:  
the distribution of source density  
probability of finding particle with x and p 

C ( p1 , p2)=
P2( p1, p2)

P1( p1)P1( p2)

Correlation function

P2( p1 , p2)= E1E 2
dN

d3 p1d
3 p2

= ∫ d4 x1 S (x1 , p1)d
4 x2S (x2 , p2)Φ (x2, p2∣x1, p1)

Femtoscopic correlations and correlation function
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Homogeneity region

Qinv

Longitudinal Co-Moving System - LCMS

p1
p2

Qinv

Identical particles

k*

Pair Rest Frame - PRF

p1

p2

k*= ∣ p1∣= ∣ p2∣

Nonidentical particles

form1= m2Qinv= 2k
*

What does femtoscopy measure?
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0.05             0.1 
k* [GeV/c]

Identical baryon- baryon  
- Quantum Statistics- QS   
- Final State Interactions- FSI  
	 - Coulomb  
	 - Strong 

Non-identical baryon- (anti)baryon 
- Final State Interactions- FSI  
	 - Coulomb  
	 - Strong 

Effects and interactions 
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0.05             0.1 
k* [GeV/c]

Identical baryon- baryon  
- Quantum Statistics- QS   
- Final State Interactions- FSI  
	 - Coulomb  
	 - Strong 

Non-identical baryon- (anti)baryon 
- Final State Interactions- FSI  
	 - Coulomb  
	 - Strong 

Effects and interactions 
 

~1/R

Width of  
correlation function  
~ 1/R

Bigger source and  
weaker correlation
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RHIC BRAHMSPHOBOS
PHENIX

STAR

AGS

TANDEMS

Relativistic Heavy Ion Collider (RHIC) 
Brookhaven National Laboratory (BNL), Upton

• 2 concentric rings of 1740 superconducting magnets 
• 3.8 km circumference
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Results



So far, the knowledge on nuclear force was derived from studies  
made on nucleon or / and nuclei. 

Nuclear force between anti-nucleons is studied for the first time. 
  
The knowledge of interaction between two anti-protons is  
fundamental to understand the properties of more sophisticated  
anti-nuclei. 

a) Proton Femtoscopy @200 GeV

14



Fit results: 
p-p CF,  
R=2.75±0.01fm;    	 χ2/NDF = 1.66; 

antiproton-antiproton CF, 
R=2.80±0.02fm , f0=7.41±0.19fm, 
d0=2.14±0.27fm; 	 χ2/NDF=1.61

χ2/NDF(f0,d0) map of the results between 
measured function and fitted one to find 
the best values of f0, d0 parameters 

 Nature 527, 345–348(2015)

       a) Strong interactions between anti-nucleons
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• f0 and d0 for the antiproton-antiproton 
interaction consistent with parameters  
for the proton-proton interaction.  

• Descriptions of the interaction among 
antimatter (based on the simplest systems of 
anti-nucleons) determined.  

• A quantitative verification of matter-antimatter 
symmetry in context of the forces 
responsible for the binding of (anti)nuclei. 

 Nature 527, 345–348(2015)

  a) Strong interactions between anti-nucleons

The scattering length f0: determines low-energy scattering. 

The elastic cross section, σe , (at low energies) determined solely by 
the scattering length,
d0 - the effective range of strong interaction between two particles. 

It corresponds to the range of the potential in an extremely simplified scenario - the square well 
potential.

• f0 and d0 -  two important parameters of strong interaction between two particles.

• Theoretical  correlation function depends on: source size, k* ,f0 and d0.
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Phys. Rev. C 74 (2006) 64906

proton-lambda correlations:  
sensitive to the Strong FSI only 

lambda-lambda correlations:  
sensitive to the Quantum Statistical  
effects and Strong FSI 

lambda-lambda and proton-lambda correlations: 
contain contributions from Residual feed-down 
Correlations (RC)

b) Strange Baryon Correlations (Including Λ Hyperons)

Phys.Rev.Lett. 114 (2015) no.2,  
022301
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b) Strange Baryon Correlations (Including Λ Hyperons)

HZ, A. Kisiel, M. Szymański

For residual correlations correction  
see talk by S. Siejka 
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Binding energy Ebin [MeV] 
Scattering length a0 [fm] 
Effective range reff [fm] 
for 3 scenarios:  
K. Morita et al. Phys. Rev. C 94, 031901  
(2016) 

Phys.Lett.B 790 (2019) 490

V1 V2 V3

Ebin 

[MeV]
- 6.3 26.9

a0 [MeV] -1.12 5.79 1.29

reff 
[MeV]

-1.16 0.96 0.65

A comparison of the measured  correlation 
functions from Au+Au collisions with  
theoretical predictions
Scattering length is positive and  
favor pΩ bound state hypothesis  

b) Strange Baryon Correlations (including p- )Ω

For strange meson correlations  
see talk by D. Pawłowska 
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c) Program Beam Energy Scan
RHIC Top Energy  
p+p, p+Al, p+Au, d+Au, 
3He+Au, Cu+Cu, Cu+Au,  
Ru+Ru, Zr+Zr, Au+Au, U+U 
QCD at high energy  
density/temperature 
Properties of QGP, EoS 

Beam Energy Scan 
Au+Au 7.7-62 GeV  
QCD phase transition 
Search for critical point 
Turn-off of QGP signatures 

Fixed-Target Program 
Au+Au =3.0-7.7 GeV 
High baryon density regime  
	 with 420-720 MeV
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Program BES

Phys. Rev. C 92 (2015) 14904

→ Rside spatial source evolution in the transverse    
     direction  
→ Rout related to spatial and time components 
→ Rout/Rside (before!) signature of phase transition 
→ Rout

2- Rside 
2 = ∆τ2 βt

2; ∆τ – emission time 
→ Rlong temperature of kinetic freeze-out and source  
     lifetime 
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Program BES

Phys. Rev. C 92 (2015) 14904

System evolves faster in  
the reaction plane than in  
the direction perpendicular to it
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STAR preliminary

Geometry: dependence on collision centrality

STAR preliminary

Opposite signs

Same signs

stat. uncertainties only

stat. uncertainties only
not corrected for feed-down

not corrected for feed-down

QM 2018, SQM 2019  
Nucl. Phys. A 982 (2019), 
359-362

QM 2018,  
Nucl. Phys. A 982 (2019), 
359-362

Clear centrality dependence 
R(0-10%) > R(10-30%) > R(30-70%)
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STAR preliminary
stat. uncertainties only stat. uncertainties only

Opposite signs

Same signs

not corrected for feed-down

STAR preliminary

not corrected for feed-down

STAR preliminary

stat. uncertainties only
not corrected for feed-down

Dependence on collision energy

QM 2018,  
Nucl. Phys. A 982 (2019), 359-362

Clear energy dependence 
R(39 GeV> > R(11.5 GeV) > R(7.7 GeV) 
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Dependence on interacting system

STAR preliminary

Same charges 0-10% @ Au+Au 39 GeV Opposite charges 0-10% @ Au+Au 39 GeV

STAR preliminary

stat. uncertainties onlynot corrected for feed-down
stat. uncertainties only

not corrected for feed-down

Determined by Coulomb Interactions

Determined by full FSI: Coulomb and 
Strong interactions (kaon-proton)

QM 2018, SQM 2019  
Nucl. Phys. A 982 (2019), 359-362

QM 2018, SQM 2019 
Nucl. Phys. A 982 (2019), 359-362

For non-identical particle correlations  
see talk by P. Szymański 

Clear system dependence 
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Dynamics: Space-time asymmetry in emission process 

Visible asymmetry


No asymmetry

P. Danielewicz and S.Pratt. 
Phys. Lett. B618: 60 2005 

P. Danielewicz and S.Pratt. 
Phys. Rev. C75:034907 2007

A. Kisiel 
Phys. Rev. C81:064906 2010 

A. Kisiel and D. A. Brown 
Phys. Rev. C80:064911 2009

C00 → source size 
C11 → space-time asymmetry
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Clear signal of 
emission asymmetry

STAR preliminary
STAR preliminary

Same signs

Opposite signs

stat. uncertainties only
stat. uncertainties onlynot corrected for feed-down

not corrected for feed-down

Asymmetry does not 
disappear in lower 
energies

Opposite signs

Same signs

Dynamics: centrality and energy dependencies

QM 2018, SQM 2019 
Nucl. Phys. A 982 (2019), 359-362

QM 2018, SQM 2019 
Nucl. Phys. A 982 (2019), 
359-362
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Like-sign 0-10% @ Au+Au 39 GeV Unlike-sign 0-10% @ Au+Au 39 GeV

stat. uncertainties only stat. uncertainties only

STAR preliminary

stat. uncertainties only

stat. uncertainties only

Heavier particles 
directed towards 
edge of the 
source.  

Heavier particles 
freeze-out earlier 

Phys. Rev. C81:064906 
2010

Source dynamics: system dependence

STAR preliminary

STAR preliminary

STAR preliminary

QM 2018, SQM 2019 
Nucl. Phys. A 982 (2019), 
359-362



29

Conclusions & 
Summary
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Summary

Correlation femtoscopy probes the source: 
- geometry (sizes) 
- dynamics (evolution process, emission sequence, ..) 
- interactions (strong, Coulomb)
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Summary

Correlation femtoscopy probes the source: 
- geometry (sizes) 
- dynamics (evolution process, emission sequence, ..) 
- interactions (strong, Coulomb)

Thank you for Your attention
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Back-up slides
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Program Beam Energy Scan

BES Program goals: 

Study QCD Phase Diagram 

1) localize where the QGP is  
not registered 

2) signatures of the 1st order 
Phase transition 

3) localize the Critical Point
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Spherical Harmonics
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Source dynamics


