Lattice QCD at T > 0A short introduction and selected topics

J. H. Weber¹ (\mathbf{TUMQCD} collaboration)

¹Michigan State University

19. ZIMÁNYI SCHOOL

Wigner Research Center for Physics of the Hungarian Academy of Sciences, Budapest, Hungary, 12/03/2019

PRD 93 no. 11, 114502 (2016); PRD 97 no. 1, 014510 (2017); PRD 98 no. 5, 054511 (2018); arXiv:1907.11747;

Introduction	Equation of state	Color screening	Summary
00000	00000	00000000000	
Outline			

- \bullet Motivation
- Lattice QCD
- **2** The QCD equation of state

3 Color screening

- Free energies of static quark states
- pNRQCD and the vacuum-like regime
- EQCD and the screening regime
- Asymptotic regime

Equation of sta 00000 Color screening

Different means for studying hot nuclear matter

EXPERIMENT

SIMULATION

- Heavy-ion collision experiments @ RHIC, LHC, FAIR, NICA
- Create a primordial fireball which is **out of equilibrium**
- Measure **real-time processes** within the primordial fireball

SUPERMUC @ LRZ, Munich

- Numerical simulations of QCD on a grid with imaginary time
- Simulate high-temperature medium in equilibrium
- Compute **imaginary-time in-medium** correlation functions

Connect heavy-ion collisions and lattice QCD simulations by interfacing with model or weak-coupling calculations

Introduction	Equation of state	Color screening	Summary
0000	00000	00000000000	
QCD in a nutshell			

$$\begin{aligned} & \left[\text{QCD action encodes gauge symmetry and other classical symmetries} \right] \\ & S_{QCD}[A, \bar{\psi}, \psi] = \int d^4 x \sum_{f=1}^{N_f} \bar{\psi}^f(x) \left(\vec{\mathcal{P}}[A(x)] + m_f \right) \psi^f(x) & \text{quark action} \\ & - \int d^4 x \frac{1}{2} \text{tr } F^{\mu\nu}(x) F_{\mu\nu}(x) & \text{gauge action} \\ & D_{\mu}[A(x)] \psi^f(x) = [\partial_{\mu} + igA_{\mu}(x)] \psi^f(x) & \text{covariant derivative} \\ & F_{\mu\nu}(x) = \partial_{\mu} A_{\nu}(x) - \partial_{\nu} A_{\mu}(x) + ig[A_{\mu}(x), A_{\nu}(x)] & \text{field strength} \end{aligned}$$

Calculate observables via path integral and compare to experiment $\langle O \rangle_{\text{QCD}} = \frac{1}{Z} \int \mathcal{D}A \ O[A] \prod_{f=1}^{N_f} \det(\not D[A] + m_f) \exp(-S_g[A]), \quad Z = \langle 1 \rangle_{\text{QCD}}$

ntroduction	Equation of state 00000	Color screening 00000000000	
λCD α	on a lattice		
(N _f		
	$S_{QCD}[U,\bar{\psi},\psi] = a^4 \sum_{x} \sum_{f=1} \bar{\psi}^f(x)$	$\left(\mathcal{D}[U(x)] + m_f \right) \psi^f(x)$	
	$-a^4\sum_{ imes}\sum_{\mu< u}rac{2}{g_0^2}\mathrm{R}$	e tr $\left\{1 - U_{\mu\nu}(x) + \mathcal{O}(a^2)\right\}$	
E	$D_{\mu}[U_{\mu}(x)]\psi^{f}(x)=rac{U_{\mu}(x)\psi^{f}(x+x)}{U_{\mu}(x)\psi^{f}(x+x)}$	$rac{\partial \hat{\mu}) - U^{\dagger}_{\mu}(x-a\hat{\mu})\psi^f(x-a\hat{\mu})}{2a}$	$+ \mathcal{O}(a^2)$

$$U_{\mu}(x) = \exp[\mathrm{i}g_0 A_{\mu}(x)]$$
 gauge link
 $U_{\mu\nu}(x) = U_{\mu}(x)U_{\nu}(x+a\hat{\mu})U_{\mu}^{\dagger}(x+a\hat{\nu})U_{\nu}^{\dagger}(x)$ plaquette

 $\stackrel{\mathrm{HPC}}{\Longrightarrow}$

Introduction ○00●0 Equation of stat

Color screening

Lattice QCD simulations in a box on a computer

Stochastically sample the (Euclidean) QCD path integral $\langle O \rangle_{\rm QCD} = \frac{1}{Z} \frac{1}{N} \sum_{\{U\}}^{N} O[U] \prod_{f=1}^{N_f} \det \left(\mathcal{D}[U] + m_f \right) \exp \left(-S_g[U] \right) + \mathcal{O} \left(\frac{1}{\sqrt{N}} \right)$ using MCMC algorithm with importance sampling

QCD on a lattice with spacing a in a box of $N_{\sigma}^3 \times N_{\tau}$ points

- scale setting: lattice spacing a is determined a posteriori control the approach to the continuum limit $a \to 0$
- time (Euclidean): periodic for gluons, antiperiodic for quarks
- space: periodic for gluons and quarks always at finite temperature and in finite volume aN_τ = 1/T (volumes only must be large enough)
 quark masses: light quarks at the physical point are expensive control the quark mass dependence through χPT

 \bullet quark flavors: usually $N_f=2+1$ or $N_f=2+1+1,$ or $N_f=0$

Equation of state 00000 Color screening

Wide ranges of lattice spacings from super coarse to super fine

• $N_{\tau} = 4 - 16$: 12-40 ens. each, $5.9 \le \beta = \frac{10}{g_a^2} \le 9.67$, a = 0.0085 - 0.25 fm

- HISQ action, errors: $\mathcal{O}(\alpha_s a^2, a^4)$; lattice artifacts are reduced
- T = 0 ens. for $m_\pi \approx 160$ MeV; $a \ge 0.04$ fm & $m_\pi \approx 320$ MeV; $a \ge 0.025$ fm
- r_1 scale for $\beta > 8.4$ from nonperturbative β function

	Equation of state	Color screening	
00000	00000	00000000000	
Earliest beginnings			

- First perturbative EoS calculation¹ (left)
- First lattice pure gauge SU(2) EoS calculation² (right)

 $^{^{1}}$ Kapusta (1979) 2 Engels et al. (1981)

Trace anomaly and	pressure		
00000	0000	0000000000	
Introduction	Equation of state	Color screening	Summary

- ____
 - The QCD partition function

$$Z = \int \mathcal{D}U \prod_{f=1}^{N_f} \det \left(\not\!\!{D}[U] + m_f \right) \exp \left(-S_g[u] \right)$$

• The pressure is obtained from the trace anomaly via integral method

$$\Theta^{\mu\mu} \equiv \varepsilon - 3p = -\frac{T}{V} \frac{d \ln Z}{d \ln a} \quad \Rightarrow \quad \frac{p}{T^4} - \frac{p_0}{T_0^4} = \int_{T_0}^T dT' \frac{\varepsilon - 3p}{T'^5}$$

• Subtraction of UV divergences (subtract divergent vacuum contribution evaluated at the same values of the gauge coupling):

$$\begin{split} \frac{\varepsilon - 3p}{T^4} &= R_\beta [\langle S_g \rangle_0 - \langle S_g \rangle_T] \\ &- R_\beta R_m [2m_\ell (\langle \bar{\ell}\ell \rangle_0 - \langle \bar{\ell}\ell \rangle_T) + m_s (\langle \bar{s}s \rangle_0 - \langle \bar{s}s \rangle_T)] \\ R_\beta(\beta) &= -a \frac{d\beta}{da}, \quad R_m(\beta) = \frac{1}{m} \frac{dm}{d\beta}, \quad \beta = \frac{10}{g_0^2} \end{split}$$

00000	OOOOO		00000000000000000	O
Low temperatures	5			
4.5 4 3.5		0.9 P/	/T ⁴ N _c =6 N _c =8 N _c =10	

• We have improved the low-temperature region³ by adding T = 123 MeV at $N_{\tau} = 10$ and T = 133, 140 MeV at $N_{\tau} = 12$

- interpolated lattice data (bands) vs hadron resonance gas (lines)
- $\Theta^{\mu\mu}:$ continuum HRG model with PDG or Quark Model spectrum
- p/T^4 : lattice HRG model with spectrum distorted by HISQ artifacts
- Cutoff effects for $T \lesssim T_c$: no trend in $\Theta^{\mu\mu}$ vs clear pattern in p/T^4

³Bazavov et al. [TUMQCD] (2016)

00000			∩ Summary
-			

Pressure at higher temperatures

• At high $T (> 2T_c)$ the HISQ cutoff dependence resembles the free theory, i.e. the continuum is approached from below (p4 from above)⁴

⁴Cheng et al. [HotQCD] (2008); Bazavov et al. [MILC, HotQCD] (2009)
 ⁵Bazavov et al. [HotQCD] (2013)

Introduction	Equation of state	Color screening
00000	00000	00000000000
Pressure at higher t	temperatures	

At high T (> 2T_c) the HISQ cutoff dependence resembles the free theory, i.e. the continuum is approached from below (p4 from above)⁴
Cutoff dependence similar in pressure & quark number susceptibilities⁵

$$\chi_{2n}^{q} = \frac{\partial^{2n} p(T, \mu_{q})}{\partial \mu_{qn}^{2n}}, \ n = 1, 2, \ q = \ell, s, \qquad \frac{p^{q}(T, N_{\tau})}{p^{q}(T)} \simeq \frac{\chi_{2}^{\prime}(T, N_{\tau})}{\chi_{2}^{\prime}(T)}$$

⁴Cheng et al. [HotQCD] (2008); Bazavov et al. [MILC, HotQCD] (2009)
 ⁵Bazavov et al. [HotQCD] (2013)

At high T (> 2T_c) the HISQ cutoff dependence resembles the free theory, i.e. the continuum is approached from below (p4 from above)⁴
 Cutoff down down a similar in pressure is sweeth number susceptibilities⁵

• Cutoff dependence similar in pressure & quark number susceptibilities⁵

$$\chi_{2n}^{q} = \frac{\partial^{2n} p(T, \mu_{q})}{\partial \mu_{q}^{2n}}, \ n = 1, 2, \ q = \ell, s, \qquad \frac{p^{q}(T, N_{\tau})}{p^{q}(T)} \simeq \frac{\chi_{2}^{\prime}(T, N_{\tau})}{\chi_{2}^{\prime}(T)}$$

• Estimate corrections from QNS and pressure in ideal gas limit as

$$\underline{p(T) \simeq p(T, N_{\tau}) + p^{q, id-15\%}(T) \left(1 - \frac{\chi_2^{\prime}(T, N_{\tau})}{\chi_2^{\prime}(T)}\right)}$$

 4 Cheng et al. [HotQCD] (2008); Bazavov et al. [MILC, HotQCD] (2009) 5 Bazavov et al. [HotQCD] (2013)

Equation of state

Color screening

QCD Equation of State on the lattice and at weak coupling

- 2018: The trace anomaly (left) and pressure (right)⁶ compared with HTL⁷ and electrostatic QCD (EQCD)⁸ calculations @ ($\mathcal{O}(g^6)$)
- $\bullet\,$ The red/green lines are the HTL/EQCD calculations with $\mu=2\pi\,T$
- \Rightarrow Lattice and weak-coupling approaches compatible for $\mathcal{T}\gtrsim300\,\mathrm{MeV}$
 - \bullet Uncertainties in weak-coupling results still $\sim 8\%$ at $T=2~{\rm GeV}$

⁶Bazavov et al. (2017)

⁷Haque et al. (2014)

⁸Laine and Schröder (2006)

Equation of sta 00000 Color screening

How is color screening related to in-medium quarkonium?

- ^bUSQCD whitepaper, 2018
- \bullet Hypothesis: 9 color screening \rightarrow sequential melting \rightarrow thermometer
- Not the full story dissociative real-time dynamics is more important

⁹Matsui and Satz, 1986

- Successively integrate out heavy scales \Rightarrow NRQCD and pNRQCD
- In a thermal bath, the thermal scales become relevant, too

• Rich interplay between different sets of hierarchically ordered scales

Equation of state 00000 Color screening

Polyakov loop correlators, $Q\bar{Q}$ and singlet free energies

- The free energy $F_{Q\bar{Q}}$ of a $Q\bar{Q}$ pair (also: color-averaged potential) $C_P(r,T) = \langle P(0)P^{\dagger}(r) \rangle_T^{\text{ren}} = e^{-\frac{F_{Q\bar{Q}}(r,T)}{T}} = \frac{1}{9}e^{-\frac{F_S(r,T)}{T}} + \frac{8}{9}e^{-\frac{F_A(r,T)}{T}}$
- The singlet free energy is related to the gauge-fixed static meson correlator at $\tau/a = N_{\tau}$ in Coulomb gauge $C_{S}(r, T) = \frac{1}{3} \left\langle \sum_{a=1}^{3} W_{a}(\tau, 0) W_{a}^{\dagger}(\tau, r) \right\rangle_{\tau}^{\text{ren}} = e^{-F_{S}(r, T)/T}$

Equation of state 00000 Color screening

Effective running coupling: vacuum-like and screening regimes

• The effective coupling $\alpha_{Q\bar{Q}}(r, T)$ is a suitable proxy for the force between the $Q\bar{Q}$ pair and for the QCD coupling α_s running with 1/r

$$\alpha_{Q\bar{Q}}(r) = \frac{r^2}{C_F} \frac{\partial E(r)}{\partial r}$$

• Generalize: $\alpha_{Q\bar{Q}}(r, T)$ for singlet free energy $F_{S}(r, T)$ instead of E(r)

$$T \ll 1/r$$
 $T \gtrsim 1/r$ $\max(\alpha_{Q\bar{Q}})$ $rT \ll 0.3$ $rT \gtrsim 0.3$ $r_{\max}T \sim 0.4$

0.06 0.1

0.2 0.3

• $\max(\alpha_{Q\bar{Q}})$ is proxy for the **maximal force** defines $r_{\max} \sim 0.4/T$ \Rightarrow Weak coupling may work for $T \gtrsim 300 \text{ MeV}$: $\max(\alpha_{Q\bar{Q}}) \lesssim 0.5$

0.02 0.03

0.01

Equation of sta 00000 Color screening

Effective running coupling: vacuum-like and screening regimes

• $F_{\alpha\bar{\alpha}}$ has for $rT \ll 1$ two distinct regimes $\alpha_s/r \gg T$ and $T \gg \alpha_s/r$

Singlet-dominance	Thermal dissociation	Screening regime
$rT \lesssim 0.05, \ldots, 0.15$	$rT\lesssim 0.3$	$rT\gtrsim 0.3$

Equation of state 00000 Color screening

Effective running coupling: vacuum-like and screening regimes

• $F_{Q\bar{Q}}$ has for $rT \ll 1$ two distinct regimes $\alpha_s/r \gg T$ and $T \gg \alpha_s/r$ $\frac{\text{Singlet-dominance}}{rT \lesssim 0.05, \dots, 0.15} | \frac{rT \lesssim 0.3}{rT \lesssim 0.3} | rT \gtrsim 0.3$

• Can define a running coupling $\alpha_{Q\bar{Q}}(r, T) \sim \alpha_s(1/r)$ in regime $\alpha_s/r \gg T$

Introduction	Equation of state	Color screening	Summary
		0000000000	
The vacuum-like re	gimes		

- $\bullet\,$ The vacuum-like regime is defined in terms of $rT\ll 1$
- $\bullet~r \ll 1/T$ is suitable for multipole expansion, i.e. pNRQCD
- The vacuum-like regime has two physically distinct sub-regimes

 $\alpha_s/r \ll T$ and $\alpha_s/r \gg T$

• For $\alpha_s/r \ll T$ weak-coupling calculations are available¹⁰

 \bullet up to $\mathcal{O}(g^7)$ for $F_{Q\bar{Q}}$

- up to $\mathcal{O}(g^5)$ for $F_S;$ matching term $g^6\,T$ & ultrasoft term $g^6\ln(rT)/r$
- For $\alpha_s/r \gg T$ weak-coupling calculations are unavailable, but deviation from vacuum physics is exponentially suppressed¹¹ due to

$$e^{-(V_o-V_s)/T} \sim e^{-lpha_s/rT}$$

¹⁰Berwein et al. (2016, 2017) ¹¹Brambilla et al. (2008)

¹²Berwein et al. (2017)

Equation of state

Color screening

Direct comparison to the weak-coupling calculation¹² using pNRQCD

¹²Berwein et al. (2017)

Equation of stat

Color screening

α_s from the singlet free energy at T > 0

- Consistent and competitive with state-of-the-art T = 0 determination¹³
- \bullet Use only $N_\tau = 12$ data with $r/a \leq 2 \mbox{ or } 3, \mbox{ i.e., } r \leq 0.17/T \mbox{ or } 0.25/T$
- Restrict to tiny distances $r \leq 0.03$ fm to reduce the perturbative error

¹³Bazavov et al. [TUMQCD] (2019)

Equation of state

Color screening

Polyakov loop correlator in pNRQCD

- Low T = 172 MeV: reconstruct C_P from only color-singlet, i.e., V_S (no sensitivity to the color octet states, the hierarchy is $\alpha_s/r \gg T$)
- High T = 666 MeV: cancellation between color-singlet and -octet leads to $1/r^2$ behavior in $F_{Q\bar{Q}}$. Data satisfy the hierarchy $\alpha_s/r \ll T$

• Must include Casimir scaling violation¹⁴ $8V_o + V_s = 3\frac{\alpha_s^3}{r} [\frac{\pi^2}{4} - 3]$

¹⁴Kniehl et al. (2005)

Electric or asympto	tic screening regimes		
00000	00000	000000000000000000000000000000000000000	
Introduction	Equation of state	Color screening	Summary

- The screening regime is defined in terms of $r \gtrsim 1/m_D$, is most conveniently studied in terms of $F_{...}^{\text{sub}}(r, T) = F_{...}(r, T) 2F_Q$
- Hierarchy $r\gtrsim 1/m_D$ automatically built into dimensionally-reduced EFT \Rightarrow the appropriate EFT is the electrostatic QCD
- The screening regime has two distinct sub-regimes:

 $r \sim 1/m_D$ and $r \gg 1/m_D$

- In the electric screening regime, $r \sim 1/m_D$, chromo-electric fields are dominant. Weak-coupling calculations are available up to $\mathcal{O}(g^5)^{15}$
- In the asymptotic screening regime, $r\gg 1/m_D,$ chromo-magnetic fields are important, and non-perturbative methods are required 16
- Asymptotic screening masses can be calculated as the bound states in EQCD \Rightarrow bound states including electric A_0 gluons for $T \lesssim \text{TeV}^{17}$

¹⁵Nadkarni (1986); Laine et al. (2007); Berwein et al. (2017)

¹⁶Arnold and Yaffe (1995); Laine and Vepsalainen (2009)

¹⁷Hart et al. (2000)

Color screening Equation of state Direct comparison to the weak-coupling calculation¹⁸ using EQCD $F_{S}^{\mathrm{sub}}|_{\mathrm{LO}} = -C_{F}\left[\frac{\alpha_{s}e^{-rm_{D}}}{rT}\right] T$ 100 $rF_S^{sub}(r,T)/C_F[a.u.]$ T [MeV] 10 10⁻² 10-3 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

- NLO singlet free energy (two-gluon exchange is deferred to $\mathcal{O}(g^6)$) $F_S^{\text{sub}}|_{\text{NLO}} = F_S^{\text{sub}}|_{\text{LO}} \left(1 + \alpha_s N_c r T [2 - \ln(x) - \gamma_E + e^x E_1(x)]\right), \ x = 2rm_D$
- Correction due to field renormalization $\delta F_{S}^{\text{sub}} = F_{S}^{\text{sub}}|_{\text{LO}} \left(1 \frac{rm_{D}}{2} \delta Z_{1}\right)$

¹⁸Berwein et al. (2017)

- NLO singlet free energy (two-gluon exchange is deferred to $\mathcal{O}(g^6)$) $F_S^{\text{sub}}|_{\text{NLO}} = F_S^{\text{sub}}|_{\text{LO}} \left(1 + \alpha_s N_c r T [2 - \ln(x) - \gamma_E + e^x E_1(x)]\right), \ x = 2rm_D$
- Correction due to field renormalization $\delta F_{S}^{\text{sub}} = F_{S}^{\text{sub}}|_{\text{LO}} \left(1 \frac{rm_{D}}{2} \delta Z_{1}\right)$
- $F_{Q\bar{Q}}^{\text{sub}}$: severe signal-to-noise problem \rightarrow high statistics, larger volumes
- Use data for $N_\tau = 4$ with (estimated) correction for cutoff effects
- $F_{O\overline{O}}^{\text{sub}}$ shows reasonable compatibility with the full $\mathcal{O}(g^5)$ result

¹⁸Berwein et al. (2017)

- Screening masses are related to the EQCD spectrum $(E\ll 2\pi T)$
- $F_{O\bar{O}}^{sub}$: severe signal-to-noise problem \rightarrow no continuum limit
- \bullet Poor results for $\mathcal{T}\lesssim 200 {\rm MeV} \Rightarrow$ need noise suppression techniques^{19}
- \bullet Screening mass only slightly larger than $2m_D$ for $F_{Q\bar{Q}}$
- $\bullet\,$ Good agreement with results from direct EQCD simulations^{20}

¹⁹Steinbeißer et al *in preparation*²⁰Hart et al. (2000)

Equation of state

Color screening

Summary O

Truly asymptotic regime: static quark free energy and entropy shift

- $S_Q(T, N_\tau)$ peaks at the same $T_c(N_\tau)$ as chiral susceptibility $\chi_2(T, N_\tau)$
- $\bullet~{\rm HRG}$ model of Polyakov loop breaks down early below $130\,{\rm MeV}$

²¹Berwein et al. (2016)

- $S_Q(T, N_\tau)$ peaks at the same $T_c(N_\tau)$ as chiral susceptibility $\chi_2(T, N_\tau)$
- $\bullet~{\rm HRG}$ model of Polyakov loop breaks down early below $130\,{\rm MeV}$
- Free energy and entropy shift are known²¹ at $\mathcal{O}(g^5)$
- Poor convergence of expansion NLO in g is still only LO in α_s
- Lattice and $\mathcal{O}(g^5)$ agree only for $T \gtrsim 10 T_c$: static mode dominates F_Q

²¹Berwein et al. (2016)

Introduction	Equation of state	Color screening	Summary
00000	00000	00000000000	•
Summary			

- We obtained the (2+1)-flavor QCD equation of state up to $T \sim 2 \text{ GeV}$, between EQCD and HTL, suggests underestimated PQCD uncertainty
- We study color screening and deconfinement using the renormalized Polyakov loop correlator and related observables
- We extract the continuum limit of static quark correlators at $\tau/a = N_{\tau}$ in (2+1)-flavor QCD up to $T \sim 2 \text{ GeV}$ and down to $r \sim 0.01 \text{ fm}$
- Vacuum-like regime at $rT \lesssim 0.3$, pNRQCD suitable at T > 300 MeV, total T > 0 effects small due to various cancellations
- For $F_{Q\bar{Q}}$ evidence of the distinctive sub-regimes singlet dominance, $\alpha_s/r \gg T$, and thermal dissociation, $\alpha_s/r \lesssim T$
- $\alpha_s(M_Z, N_f = 5) = 0.11638^{+95}_{-87}$ from $F_S(r, T)$ agrees with T = 0 result
- Evidence of electric screening regime controlled by the perturbative Debye mass at $0.3 \lesssim rT \lesssim 0.6,$ described by EQCD at $T > 300\,{\rm MeV}$
- Static quark entropy shift $S_Q = -dF_Q/dT$ probes the deconfinement, delivers T_c surprisingly (?) similar to chiral observables (\rightarrow Petreczky)