Radius of convergence in lattice QCD at finite μ_B

Kornél Kapás, M. Giordano, S. Katz
D. Nógradi, A. Pásztor

arXiv:1911.00043 [hep-lat]

Eötvös Loránd University - Lattice Gauge Theory group

19. Zimányi School
2019.12.03.
Introduction
Standard statistical mechanical systems in a finite volume

- Partition function of a standard lattice model is a finite polynomial of fugacity (up to a non-vanishing factor)

\[Z = \sum_{n=-kV}^{n=+kV} Z_n \left(e^{\mu/T} \right)^n \]

- Since it is a polynomial it has \(2kV \) roots in the fugacity (\(z = e^{\mu/T} \)): Lee-Yang zeros
- \(Z_n \in \mathbb{R} \), thus if \(z \) is a Lee-Yang zero so is \(z^* \)
- Due to CP symmetry \(Z \) has \(z \to 1/z \) symmetry
- The leading singularity of the pressure (\(p \sim \ln Z \)) is the closest root of \(Z \) to the origin in \(\mu \) which gives the radius of convergence of the Taylor-expansion of the pressure in \(\mu \).
Due to the sign problem configurations cannot be generated at finite μ

Our goal is to determine the radius of convergence of the pressure in $2 + 1$ flavor lattice QCD

If the leading singularity of the pressure in the thermodynamic limit is not on the real axis \rightarrow lower bound on the critical endpoint (CEP) location

If it is on the real axis \rightarrow phase transition

The equation of state as calculated from the Taylor expansion is only reliable up to the radius of convergence
Rooted staggered fermions I.

Partition function of QCD

\[Z = \int \mathcal{D}U \det M(U; \mu) e^{-S_G[U]} \] \hspace{1cm} (1)

- The determinant can be extracted with the eigenvalues \((\xi_i) \) of a reduced matrix

Fermion determinant at finite lattice spacing

\[\det M(a\mu) = e^{-3N_s^3N_t a \mu} \prod_{i=1}^{6N_s^3} (e^{N_t a \mu} - \xi_i) \] \hspace{1cm} (2)

- A single determinant describes four quark flavors in the continuum and it is a polynomial in fugacity in a finite lattice
The physical expectation is that quartets appear in the spectrum of the reduced matrix.

The standard solution (in case of $N_f = 2$) is taking the square root of the determinant.

Standard staggered rooting

$$Z = \int \mathcal{D}U \ (\det M(U; \mu))^{N_f/4} e^{-S_G[U]} \quad (3)$$

The determinant and thus the partition function are **no more polynomials** in the fugacity.

Taking the square root at finite lattice spacing introduces extra singularities that decrease the radius of convergence.
Rooting by geometric matching

- We suggest a **new definition** of the "rooted" staggered determinant, which ensures that the partition function is a polynomial at a finite lattice spacing.

Geometric matching

We group the eigenvalues of the reduced matrix and take the geometric mean:

\[\xi_{\text{rooted}} = \sqrt{\xi_1 \xi_2} \]

- After this type of "rooting" the rooted determinant is again a polynomial:

The new "rooted" determinant

\[
\det M(a\mu) = e^{-\frac{3}{2} N_s^3 N_t a\mu} \prod_{i=1}^{3N_s^3} \left(e^{N_t a\mu} - \xi_{\text{rooted}}^i \right) \quad (4)
\]
Figure: Eigenvalues of the reduced matrix at $N_s = 12$ and the geometric matching denoted with circles.
Figure: The roots in complex μ_q of the partition function at $N_s = 12$. The absolute value of the zero closest to the origin gives the radius of convergence.
Radius of convergence
Infinite volume extrapolations

Lattice setup: $N_f = 2 + 1$, 2-stout improved staggered action, $N_s = 8, 10, 12$; $N_t = 4$; $T \sim T_c$

Figure: Infinite volume extrapolation of the imaginary part of μ_{LY} (on the left side) and the radius of convergence (on the right side)
Figure: Infinite volume extrapolations of the radius of convergence for various temperatures (with linear fit on $8^34,10^34,12^34$ lattices)
Summary

- The radius of convergence gives a lower bound on the location of CEP or predicts a phase transition.

- The standard staggered rooting ruins the polynomial behavior of the partition function.

- The so-called geometric matching gives the ’rooted’ determinant in a way that the partition function remains a polynomial.

- From the roots of the polynomial the radius of convergence of the pressure can be obtained directly.