Fluckuations seudy in MC model of inkeracting quark-gluon strings

Daria Prokhorova
St. Petersburg State University
19. ZIMÁNYI SCHOOL

WINTER WORKSHOP ON HEAVY ION PYSICS

QCD phase diagram

Baryo-chemical potential

QCD phase diagram

Baryo-chemical potential

beam momentum $[A \mathrm{GeV} / c]$

[Gazdzicki, M. and Seyboth, P. Acta Phys. Pol. B 47, 1201 (2016)]

QCD phase diagram

Baryo-chemical potential

beam momentum $[A \mathrm{GeV} / c]$

[Gazdzicki, M. and Seyboth, P. Acta Phys. Pol. B 47, 1201 (2016)]

System size - energy scan to spot the critical point by signal of enhanced fluctuations

QCD phase diagram

Baryo-chemical potential

beam momentum [$A \mathrm{GeV} / c$]

System size - energy scan to sp $\boldsymbol{f t}$ the critical point by signal of enhanced fluctuations

QCD phase diagram

beam momentum [$A \mathrm{GeV} / C]$

[Gazdzicki, M. and Sey oth, P. Acta Phys. Pol. B 47, 1201 (2016)]

System size - energy scan to sp $\boldsymbol{s t}$ the critical point by signal of enhanced fluctuations

QCD phase diagram

Mona Schweizer, CERN

System size - energy scan to sp $\boldsymbol{f t}$ the critical point by signal of enhanced fluctuations

QCD phase diagram

[Gazdzicki, M. and Sey oth, P. Acta Phys. Pol. B 47, 1201 (2016)]

System size - energy scan to sp $s t$ the critical point by signal of enhanced fluctuations

One can measure:

- the fluctuations of multiplicity, transverse momentum
- moments of net electric charge or net baryon charge
- correlation coefficients to reveal the collective behavior

QCD phase diagram

[Gazdzicki, M. and Sey oth, P. Acta Phys. Pol. B 47, 1201 (2016)]

System size - energy scan to sp $s t$ the critical point by signal of enhanced fluctuations

One can measure:

- the fluctuations of multiplicity, transverse momentum
- moments of net electric charge or net baryon charge
- correlation coefficients to reveal the collective behavior

But the fluctuation background has to be subtracted

QCD phase diagram

[Gazdzicki, M. and Sey oth, P. Acta Phys. Pol. B 47, 1201 (2016)]

System size - energy scan to sp $s t$ the critical point by signal of enhanced fluctuations

One can measure:

- the fluctuations of multiplicity, transverse momentum
- moments of net electric charge or net baryon charge
- correlation coefficients to reveal the collective behavior

But the fluctuation background has to be subtracted
Look for the origin from initial stages! ${ }_{10}$

Quark-gluon string approach

Non-perturbative Regge approach to describe the soft particle spectra ($<1 \mathrm{GeV} / \mathrm{c}$)

Quark-gluon string approach

[X. Artru and G. Menessier Nuclear Physics B70 (1974) 93-115]

Quark-gluon string approach

[Andersson B. et al Physics Reports 97, 31-145 (1983)]

Quark-gluon string approach

Non-perturbative Regge approach to describe the soft particle spectra ($<1 \mathrm{GeV} / \mathrm{c}$)

[X. Artru and G. Menessier Nuclear Physics B70 (1974) 93-115]

Quark-gluon string approach

Non-perturbative Regge approach to describe the soft particle spectra ($<1 \mathrm{GeV} / \mathrm{c}$)

Colorless hadron represented by the oscillating Jo-Jo solution

[X. Artru and G. Menessier Nuclear Physics B70 (1974) 93-115]

Quark-gluon string approach

[X. Artru and G. Menessier Nuclear Physics B70 (1974) 93-115]

Interacting quark-gluon strings

Interacting quark-gluon strings

The string transverse position fluctuations changes the type of particle emitting sources

Interacking quark-gluon strings

The string transverse position fluctuations changes the type of particle emitting sources

Simplification of the transverse picture

String fusion modifies the color field density [Braun, M. A., Kolevatov, R. S., Pajares, C. Vechernin, V. V. V. EP C, , 32, 535-546 (2004)]
This affects the mean multiplicity by the string and the mean transverse momentum of produced particles

Interacking quark-gluon strings

The string transverse position fluctuations changes the type of particle emitting sources

$$
\begin{aligned}
& \langle\mu\rangle_{k}=\mu_{0} \sqrt{k} \\
& \left\langle p_{T}^{2}\right\rangle_{k}=p_{0}^{2} \sqrt{k},
\end{aligned}
$$

Simplification of the transverse picture

String fusion modifies the color field density [Braun, M. A., Kolevatov, R. S., Pajares, C. Vechernin, V. V. EPJ C, 32, 535-546 (2004)] This affects the mean multiplicity by the string and the mean transverse momentum of produced particles

Interacking quark-gluon strings

The string transverse position fluctuations changes the type of particle emitting sources

$$
\begin{aligned}
& \langle\mu\rangle_{k}=\mu_{0} \sqrt{k} \\
& \left\langle p_{T}^{2}\right\rangle_{k}=p_{0}^{2} \sqrt{k}
\end{aligned}
$$

Simplification of the transverse picture

String fusion modifies the color field density [Braun, M. A., Kolevatov, R. S., Pajares, C. Vechernin, V. V. EPJ C, 32, 535-546 (2004)]
This affects the mean multiplicity by the string and the mean transverse momentum of produced particles

3D picture
 Variations in the string length and locations introduces the additional fluctuations

Interacking quark-gluon strings

The string transverse position fluctuations changes the type of particle emitting sources

$$
\begin{aligned}
& \langle\mu\rangle_{k}=\mu_{0} \sqrt{k} \\
& \left\langle p_{T}^{2}\right\rangle_{k}=p_{0}^{2} \sqrt{k},
\end{aligned}
$$

Simplification of the transverse picture

String fusion modifies the color field density [Braun, M. A., Kolevatov, R. S., Pajares, C. Vechernin, V. V. V. EPJ C, , 32, 535-546 (2004)]
This affects the mean multiplicity by the string and the mean transverse momentum of produced particles

3D picture

Can check commonly used measures for robustness!

Fluctuations study

Strongly intensive quantities - independent both of the volume and its event-by-event fluctuations for the Ideal Boltsman gas in Grand Canonical Ensemble

Fluctuations study

Strongly intensive quantities - independent both of the volume and its event-by-event fluctuations for the Ideal Boltsman gas in Grand Canonical Ensemble
[M. I. Gorenstein and M. Gaździcki, Physical Review C 84, 014904 (201 1)]

$$
\begin{gathered}
\Delta[A, B]=\frac{1}{C_{\Delta}}[\langle B\rangle \omega[A]-\langle A\rangle \omega[B]] \\
\Sigma[A, B]=\frac{1}{C_{\Sigma}}[\langle B\rangle \omega[A]+\langle A\rangle \omega[B]-2(\langle A B\rangle-\langle A\rangle\langle B\rangle)]
\end{gathered}
$$

Fluctuations study

Strongly intensive quantities - independent both of the volume and its event-by-event fluctuations for the Ideal Boltsman gas in Grand Canonical Ensemble
[M. I. Gorenstein and M. Gaździcki, Physical Review C 84, 014904 (2011)]

$$
\begin{gathered}
\Delta[A, B]=\frac{1}{C_{\Delta}}[\langle B\rangle \omega[A]-\langle A\rangle \omega[B]] \\
\Sigma[A, B]=\frac{1}{C_{\Sigma}}[\langle B\rangle \omega[A]+\langle A\rangle \omega[B]-2(\langle A B\rangle-\langle A\rangle\langle B\rangle)]
\end{gathered}
$$

In two kinematically separated regions:

$$
\Sigma\left[\mathrm{N}_{\mathrm{F}}, \mathrm{~N}_{\mathrm{B}}\right]=\frac{1}{\mathrm{C}_{\Sigma}}\left[\left\langle\mathrm{N}_{\mathrm{B}}\right\rangle \omega\left[\mathrm{N}_{\mathrm{F}}\right]+\left\langle\mathrm{N}_{\mathrm{F}}\right\rangle \omega\left[\mathrm{N}_{\mathrm{B}}\right]-2 \cdot\left(\left\langle\mathrm{~N}_{\mathrm{F}} \cdot \mathrm{~N}_{\mathrm{B}}\right\rangle-\left\langle\mathrm{N}_{\mathrm{F}}\right\rangle\left\langle\mathrm{N}_{\mathrm{B}}\right\rangle\right)\right]
$$

Fluctuations study

Strongly intensive quantities - independent both of the volume and its event-by-event fluctuations for the Ideal Boltsman gas in Grand Canonical Ensemble
[M. I. Gorenstein and M. Gaździcki, Physical Review C 84, 014904 (201 1)]

$$
\Sigma[A, B]=\frac{1}{C_{\Sigma}}[\langle B\rangle \omega[A]+\langle A\rangle \omega[B]-2(\langle A B\rangle-\langle A\rangle\langle B\rangle)]
$$

In two kinematically separated regions:

$$
\Sigma\left[\mathrm{N}_{\mathrm{F}}, \mathrm{~N}_{\mathrm{B}}\right]=\frac{1}{\mathrm{C}_{\Sigma}}\left[\left\langle\mathrm{N}_{\mathrm{B}}\right\rangle \omega\left[\mathrm{N}_{\mathrm{F}}\right]+\left\langle\mathrm{N}_{\mathrm{F}}\right\rangle \omega\left[\mathrm{N}_{\mathrm{B}}\right]-2 \cdot\left(\left\langle\mathrm{~N}_{\mathrm{F}} \cdot \mathrm{~N}_{\mathrm{B}}\right\rangle-\left\langle\mathrm{N}_{\mathrm{F}}\right\rangle\left\langle\mathrm{N}_{\mathrm{B}}\right\rangle\right)\right]
$$

[E. V. Andronov, Theoretical and Mathematical Physics 185, 1383 (2015)]

Interesting to have a look, because in the model of interacting strings strongly intensive measures become dependent on the particle production sources composition \rightarrow one can probe by this study the physics of initial sources and type of their interaction

MC model results

MC model results

strongly intensive for the independent strings, but

MC model results

strongly intensive for the independent strings, but

ALICE 2.76 TeV results

[presented at Hot Quarks 2018 by Iwona Sputowska for the ALICE Collaboration]

$$
\Sigma\left[\mathrm{N}_{\mathrm{F}}, \mathrm{~N}_{\mathrm{B}}\right]=\frac{1}{\mathrm{C}_{\Sigma}}\left[\left\langle\mathrm{N}_{\mathrm{B}}\right\rangle \omega\left[\mathrm{N}_{\mathrm{F}}\right]+\left\langle\mathrm{N}_{\mathrm{F}}\right\rangle \omega\left[\mathrm{N}_{\mathrm{B}}\right]-2 \cdot\left(\left\langle\mathrm{~N}_{\mathrm{F}} \cdot \mathrm{~N}_{\mathrm{B}}\right\rangle-\left\langle\mathrm{N}_{\mathrm{F}}\right\rangle\left\langle\mathrm{N}_{\mathrm{B}}\right\rangle\right)\right]
$$

ALICE 2.76 TeV results

decreases with the centrality in data

ALICE 2.76 TeV results

decreases with the centrality in data
the opposite behavior with centrality in HIJING

ALICE 2.76 TeV results

decreases with the centrality in data
the opposite behavior with centrality in HIJING

FUTURE PLANS

- STUDY N-PT CORRELATIONS AND FLUCTUATIONS

- STUDY NET-BARYON CUMULANTS

- INTRODUCE EXPLICIT ENERGY DEPENDENCE OF STRING NUMBERS

This work ìs supported by the Russian Foundation for Basic Research, project 18-32-01055_mol_a

FUTURE PLANS

- STUDY N-PT CORRELATIONS AND FLUCTUATIONS

- STUDY NET-BARYON CUMULANTS

- INTRODUCE EXPLICIT ENERGY DEPENDENCE OF STRING NUMBERS

This work is supported by the Russian Foundation for Basic Research, project 18-32-01055_mol_a
Thank you for your attention!

BACK UP

Correlations coefficient

$$
b_{p_{t}-n}=\left.\frac{\left.<n_{F}\right\rangle}{\left\langle p_{t B}\right\rangle} \cdot \frac{\left.d<p_{t B}\right\rangle}{d n_{F}}\right|_{\left.n_{F}=<n_{F}\right\rangle}
$$

Correlations coefficient

$$
\begin{aligned}
& \text { <pT_B>_pT_F }
\end{aligned}
$$

