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Introduction
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QGP and phase diagram

Two phases predicted for QCD matter :

@ Hadronic phase :
Quarks and gluons are bound into hadrons : confinement
This is hadronic matter, we can observe it experimentally

@ QGP phase :
Quarks and gluons are free in the medium
We don't directly observe this phase experimentally
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QGP and phase diagram
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Figure — Phase Diagram of nuclear matter
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QGP and phase diagram

QCD lagrangian : life is tough

ZLaco = bl + &Py ATATY — mill — §FRF

Perturbative approach pQCD

@ Need of a small coupling constant for convergence of the
perturbative series, works at high energy / high T, u.

@ not working at phase transition, the coupling constant is large.

Lattice approach IQCD

@ Space-time discretized on a lattice. Matter on the node, gluons
are the lines connecting the nodes

@ Static study, no dynamics on lattice, only thermodynamics

@ Does not work at finite chemical potential, only at finite
temperature.




Introduction
0000

QGP and phase diagram

e data
— heavy-ion collisions: T > u
(see however FAIR, NICA)
— compact stars: T < p

150 MeV Quark-Gluon

Plasma

Hadrons

Color—flavor locking

T ) )

308 MeV v

A. Schmitt from ect* summer school lectures
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QGP and phase diagram

GSI, FAIR

NICA

BES program (RHIC)
SPS (CERN)

Lower temperature and higher density : search for critical end
point, phase transitions and neutron star physics.

Needs prediction to know where to search. Those predictions can
only be made using effective models
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(P)NJL Model
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Effective model

Works only in a special domain of energy but allows finite chemical
potential studies.

Contact interaction

Static approximation : no gluons propagating the interaction

\>mmm< Pl Frozen cluons
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Nambu-Jona-Lasinio (NJL) Lagrangian
L = 5U¢L(i7ﬂay — m)yl + G(@;/\,ﬂpﬁ()z + 't Hooft term

o Chiral symmetry SU[(3) ® SUR(3)
@ Color symmetry SU.(3) (but global) m) = 0.0055GeV
o Flavour symmetry SUs(3) m? = 0.134GeV/
A =05696eV
Center symmetry is missing G =23GeV 2
K = 35 GeV~°
Confinement is not described
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PNJL model

Polyakov loop

Confinement = effective potential U(¢, ¢, T), ¢ the Polyakov loop.
PNJL = Frozen gluons + Thermal gluons.

v

Polyakov extended NJL Lagrangian

D%PNJL = ak(”po — m)l/Jk aF G(wk/\ﬂ,bk)2 + ,t HOOft — U((P, 4_), T)

\




PNJL model

(P)NJL models
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- mean field in which quarks propagate, gives a pressure to the
medium
- It corresponds to the thermodynamics of the
QCD lagrangian.

- The parameters are determined by fitting with the Pyy, of IQCD.

Lra Fapv torm in the

Y

U(p,p, T b>(T) £ I -
WL — —2(Lgg — b( +¢°) + B (§9)?
with the parameters : by(T) = ap + al(%) + 32(%)2 + a3(
a0 al ar as b3 b4 To
6.75 | -1.95 | 2.625 | -7.44 | 0.75 | 7.5 | 270 MeV

By
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PNJL model

From quarks to hadrons : mesons
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PNJL model

Quark-antiquark bound states

In NJL, degrees of freedom are quarks. Mesons need to be build from
quark-antiquarks bound states

meson Amplitude

iU(k?) = T 7 &,T
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Mesons masses

The mass is given by the poles : m = k
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PNJL model

Bethe-Salpeter equation

Mesons masses

By analogy, the mass is given by the poles :
1—2GII(ky = m,k=0) =0
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PNJL model

Limitations of the model

V' Lagrangian which quite shares the symmetries of the QCD
lagrangian

v Works at finite density and in the phase transition region

v Degrees of freedom = quarks but hadronic matter made from
bound states

Bad things

@ Dynamical gluons do not participate in the interaction : low
energy approximation.

@ 4-point interactions are non renormalizable : need of a cut-off.
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Grand potential

Partition function

As always in statistical physics, we need the partition function :
Z[ﬁ, q] = f .@q.@q {foﬁ C/va d3X.>2ﬂNJL}

Grand potential

Using the bosonisation procedure, we obtain the mean field partition
function :

Z(q, q| —exp{ fo deV i"g + TrInS,\_ﬂﬁ}

O (T, p) = = In Z[g. q]
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Grand potential

NJL grand potential

Ony = 2 fA d3

+2T [57(In[1 + exp(—=B(Ep — )] + In[1 + exp(—B(Ep + 1))]

+2G Y < Pripr >2 —4KTL < Pripj >)

PNJL grand potential
A 43
Qpny = 2f d p sEp

—|—2Tf0°°(|n[1 + LT exp(—B(Ep — 1))] + In[L + Lexp(—B(Ep + 1))]

+2G Y, < JJkl[Jk >2 _4AKT; < l[_Jk4Jj > +Upnur)
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Grand potential

— PNJL T0=0.19 Gev
PNJL T0=0.27 GeV
NJL

— LATTICE QCD 2014

P/T*[GeV/fm?]

of -
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T[GeV]

Figure from 3 student Laurence Pied



Ni expansion

't Hooft scaling : gAY — gNcp3f

Equation of state
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A, .
: with g, = cst

2lNk (gN )ZIN k—21

k is the number of fermion lines and | is the number of interaction

lines.

We go beyond mean field approximation (orange, red) in the N¢

expansion.

iSz(p) = iS(p)(( O(1)O(Ne) |+ O((gNc)*)O(1) +

O((gNe)>)0(~-) |+

)
O((ghe))O(5) |+ -
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Mesonic grand potential

Mesonic grand potential

Q= -2 (4 2 ds |: 1 1 :|5
S Ry vl ooy e ey ooy sy KL

Phase shift : the physics

The phase shift depends on the mesons masses
(SM = —Arg[l - QKMHM]
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Effective temperature

ao ai an as b3 b4 TO
6.75 | -1.95 | 2.625 | -7.44 | 0.75 | 7.5 | 270 MeV

Traditional PNJL - Before

One of the parameter is To = 270MeV/, the critical temperature for
confinement.

This is the pure Yang-Mills critical temperature.

Quarks are here too! - Better

Shift in the critical temperature if we gluons can split into -G
pairs. We use the reduced temperature to quantify it.

ff _ T T, ff ~ r
Te — = T\e/M - O 57 Te https ://arxiv.org/abs/1302.1993, Haas and al.

This rescales the critical temperature to To = 190MeV
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Effective temperature

Different quark-gluon interaction

We include a temperature dependance in the rescaling :

_ T—To(T)

where : To = a+ bT +cT?+dT3 + et

and : bp(T) = a0 + o7 + 15p + mps

1.0

a b | ¢ | d e o
0.082 | 0.36 | 0.72 | -1.6 | -0.0002 | % °
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DF, T Steinert, J.Aichelin arxiv 1908.08122
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Pure Yang Mills approach
—=- Hass and al approach
—- Subatech approach
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Equation of state at zero u

DF, T Steinert, J.Aichelin arxiv 1908.08122
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https ://arxiv.org/abs/1407.6387v2, HotQCD Collaboration

We reproduce lattice results at 0 p

We have an effective model based on a lagrangian that shares QCD
symmetry and match lattice results.

This is an effective theory, no sign problem, we can expand to finite
chemical potential.




Equation of state at zero u

DF, T Steinert, J.Aichelin arxiv 1908.08122
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— PNJL
1QCD
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Critical temperature

Mesonic contributions to the pressure

As expected, Mesons have significant
contribution at low temperature.

Minimum of speed of

sound : localisation of the

Cross over region.




At finite u

Lattice at finite p

Equation of state

Lattice can perform Taylor expansion around zero chemical

potential.
Tc(p8)

7:(0) Tc(1s)

:1—1{("73)2—1—...

"On the critical line of 241 flavor
QCD” Cea, Cosmai,Papa
The x coefficient is the second order derivative of our function :

90000000

9Tc(p)
J— c\IB
k= —T(0) Y
] 1273 =0
DF, T Steinert, J.Aichelin arxiv 1908.08122
Taylor =) Kaczmarek et al. PRD (2011) pd =0
o e +0(2)
Our Cr|t|ca| tem peratu re Taylor }—©— Endrodiet al. JHEP (2011) stout2, =0
Im. Ceaetal. PRDQ0I4) o HISQ. pay,
— I . stout2, =0,
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At finite u

Aleksi Kurkela and Aleksi Vuorinen, Cool quark matter, Phys. Rev. Lett. 117, 042501 (2016)

10 pQCD
N 09 |— PNJL
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Large p comparison

e Match pQCD predictions at large u
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At finite u

@ To determine the critical chemical potential, we first calculate
the two solutions for bare and dressed quarks mass.

@ Region with three solutions, meaning that we have a first order
transition
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Figure from 4" student Fabien Mathieu
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At finite u
To determine precisely the value of jicr, we use the same process
but for the grand potential.

T T T T T
0034 t —— Dressed mass solution
: Bare mass solution
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Critical chemical potential

The value obtained is 0.425 GeV for T=0.
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At finite u

Critical End Point

gu(p, T,mq,ms,p,¢) =0 gs(u, T,mq, ms,p,$) =0

0QpyyL (4, T.mq,ms,p.¢) 0 9QpnyL (1, T, mq,ms,¢.) 0
o _ op -

The solution obtained has the coordinates :
(Tcep = 0.11 GeV, uSEF =0.32 GeV).

Alexandre Biguet, PhD thesis, https ://tel archives-ouvertes.fr/tel-01453184/document

DF, T Steinert, J.Aichelin arxiv 1908.08122
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At finite u

0.3 v v

Tmott pion
---- Pressure crossing point
0.25 r -+ Speed of sound minimum
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DF, T Steinert, J.Aichelin arxiv 1908.08122



At finite u

Equation of state
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Conclusion :
@ PNJL : effective model to study the phase diagram at finite y.

PNJL + TO(T) + Pressure beyond mean field (mesons)

SNENENENENEN

N

Lattice equation of state at y = 0.

Lattice equation of state at p =~ 0.

PQCD results for pressure at large p

Cross over transition for T (speed of sound, Tmott)

First order transition localized at y = 0.425 GeV at T = 0

Critical End Point coordinates :
(Tcep = 0.11 GeV, uSEP = 0.32 GeV)

Phase diagram of QCD matter
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Thank you for your attention!!
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Sign problem

Partition function : Z = [ 2y %3Py exp(—S)

With the action :

S = [ d**x¢(1v(9y + iAy) + pya + m)p = [ d*xpMy

@ y appears as an A4 imaginary quadrivector and :

M = 70y + ivyA, + pya+m

We then have :

M (i) = M(—p*)

@ The action is now complex. It can be seen using the
hermiticity of the 5 matrix. M hermiticity valide at # = 0 and
but not for finite .
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Ua(1) anomaly
e Classical action invariant — symmetry.

@ Quantum action not invariant — symmetry broken.

@ Symmetry broken by quantum fluctuation : Anomalies !
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S matrix

_ 50D _ Fy(kEY)
S(p.E) = exp(2i0(P. E))) = £ g
The zeroes of the Jost function are the poles of the S-matrix.

@ S-matrix has a pole at k = +ix : Bound states have
exponentially decaying solutions.
@ Poles in the lower half plane can be written as k = -ix + 7y

e y= 0, resonances
e v = 0, antibound or virtual states.
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