Effects of random phase shifts from multi-particle Coulomb-interactions on Bose-Einstein correlations

> Ayon Mukherjee with

Srikanta Kumar Tripathy, Sándor Lökös, Antal Jakovác & Máté Csanád

Department of Atomic Physics Eötvös Loránd Tudományegyetem Budapest, Hungary

December 4, 2019

The Basics

Bose-Einstein correlations

- Quantum-statistical BE-HBT correlations: main source of momentum correlation for identical bosons (with symmetric pair WF's) in HIC's
- Probes for space-time geometry of emitter
- Phase-space density of emitter:

$$
S(x, p) = S_{\rm core}(x, p) + S_{\rm halo}(x, p)
$$

- \bullet "core" \rightarrow primordial hadrons & "halo" \rightarrow hadrons from decays [T.Csörgő, B.Lörstadand, J.Zimányi; Z.Phys.C71,491 (1996)]
- Two-particle correlation fn., with $q = p_1 p_2$:

$$
C_2(q,K)=1+\frac{\left|\tilde{S}(q,K)\right|^2}{\left|\tilde{S}(0,K)\right|^2}\approx1+\lambda_2\frac{\left|\tilde{S}_\text{core}(q,K)\right|^2}{\left|\tilde{S}_\text{core}(0,K)\right|^2}
$$

The Basics (contd.)

Correlation strengths

• Two-particle correlation strength:

$$
\lambda_2 = C_2(0) - 1 = f_c^2 = \left(\frac{N_{\text{core}}}{N_{\text{core}} + N_{\text{halo}}}\right)^2
$$

- Three-particle correlation strength: $\lambda_3 = C_3(0) 1$
- Partially coherent hadron production distorts λ_2 & λ_3 :

$$
\lambda_2 = f_c^2((1 - p_c)^2 + 2p_c(1 - p_c))
$$

\n
$$
\lambda_3 = 2f_c^3((1 - p_c)^3 + 3p_c(1 - p_c)^2) + 3f_c^2((1 - p_c)^2 + 2p_c(1 - p_c))
$$
;

 \bullet p_c : partially coherent fraction of the fireball

[T.Csörgő; HeavyIonPhys.15:1-80 (2002)]

•
$$
\kappa_3 = (\lambda_3 - 3\lambda_2)/2\lambda_2^{3/2} = (1 - p_c - 2p_c^2)/[(1 + p_c)\sqrt{1 - p_c^2}]
$$

(independent of f_c)

 \bullet λ_2 , λ_3 & $\kappa_3 \rightarrow$ probes for partial coherence

The Basics (contd..)

Coulomb-interaction effects

- Particles' paths modified by surrounding charges \rightarrow phase shift
- Bose-Einstein correlations contain symmetrised wave functions
- Path of pair: closed loop \rightarrow Aharonov-Bohm effect with random field:

[Y.Aharonov & D.Bohm; Phys.Rev.115,485 (1959)]

• Background is the internal field \rightarrow causes the phase-shift

The Basics (contd...)

Random phase

- Correlation functions modified by randomly picked up phases
- Two-particles, pure core, w/o random phase:

$$
C_{AB} = \frac{\langle |\Psi(r_A, r_B)|^2 \rangle}{\langle |\Phi(r_A)|^2 \rangle \langle |\Phi(r_B)|^2 \rangle} = 1 + \cos(qR) \implies C_{AB}\big|_{q=0} - 1 = 1
$$

• With random phase:

$$
\langle |\Psi(r_A,r_B)|^2 \rangle \sim 1 + \cos\left(qR+\phi\right) \implies \mathcal{C}_{AB} - 1 = \cos(\phi)
$$

- $C_2(q) = 1 + \cos(qR)$ \to $C_2(q) = 1 + \cos(qR + \phi)$
- Phase distribution is Gaussian $e^{-\phi^2/(2\sigma_\phi^2)}$
- Averaging over ϕ values: $C_2(q)-1=\cos(qR)e^{-\frac{\sigma_\phi^2}{2}}$
- Two- and three-particle correlation strengths reduced:

$$
\lambda_2 = C_2(0) - 1 = e^{-\sigma_{\phi}^2/2} \& \ \lambda_3 = C_3(0) - 1 = 3e^{-\frac{\sigma_{\phi}^2}{2}} + 2e^{-\frac{2\sigma_{\phi}^2}{9}}
$$

The Model

From phase-shift to time delay

- \bullet ϕ results in a change in the "time-of-flight" Δt
- Charge cloud has N_{charges} (N_c) in a 3-D Hubble flow
- Test particle with initial momentum p_{in} in random direction
- Measuring $t_{\rm ToF}(d)$, calculate $\Delta t = t_{\rm ToF}(d) t_{\rm ToF}^{(N_c=0)}(d)$
- \bullet Δt distribution is Gaussian, with width σ_t
- \bullet Δt related to phase-shift:

$$
\phi = k\Delta x = \Delta t \cdot v \frac{p}{\hbar} = \Delta t \frac{p^2}{\hbar \sqrt{m^2 + p^2}} \implies \sigma_{\phi} = \frac{\sigma_t p^2}{\hbar \sqrt{m^2 + p^2}}
$$

- $\sigma_t = \sigma_t(p)$ close to power-law
- More charges: larger phase shift possible
- Important parameters: charge density N_c , path-length d & fireball size R

The Results I

Time-delay distribution

 Δt distribution is slightly off-centre and also not perfectly Gaussian: needs detailed investigation

The Results II

σ_t & path-length

Convergence of $\sigma_t(p)$ with path-length d to be investigated

N^c = 500, R = 5 fm

The Results III

σ_t vs. N_c & R

Phase shift seems to scale with $\left({\textit{N}}_c^{1/3}/{\textit{R}}\right)^2$ • Probably due to linear density squared?

The Results IV

Correlation strength modification I

- Low- m_t decrease of $\lambda_{2,3}$
- Small magnitude, depends on charge density

The Results V

Correlation strength modification II

- $\kappa_3(p_c)$ [independent of f_c] is increased by this effect
- $p_c > 0$ decreases it

- Two- & three-particle correlations may reveal coherence
- The charge-cloud around a given pair \rightarrow a random background
- Can be interpreted as an Aharonov-Bohm-like effect
- The $\lambda_2(m_t)$ & $\lambda_3(m_t)$ are modified at lower m_t
- \bullet $\kappa_3(m_t)$ can distinguish partial coherence and AB-like effect
- Still need to explore many details ...

Thank you for your attention!