Coulomb correction for Lévy-type sources

Máté Csanád, Márton Nagy and Sándor Lökös

Eötvös University, Budapest and EFOP-3.6.1-16-2016-00001, Gyöngyös

Zimányi Winter School, 2019, Budapest, Hungary

Máté Csanád, Márton Nagy and Sándor Lökös [Coulomb correction for Lévy-type sources](#page-19-0) 1 / 20

Outline

- **•** Bose-Einstein correlations
- Lévy-type sources
- **•** Motivation from experimental results
- **•** Final state interactions and distortion effects
- **Different methods for Coulomb-correction**
- **o** Summary

Bose-Einstein correlations – basic definitions

- $S(x, p)$ source function, the two-particle wavefunction is symmetrized **• Momentum distribution can be calculated:**
	- $N_1(p) = \int S(x, p) |\Psi^{(1)}(x)|^2 d^4x$
	- $N_2(p) = \int S(x_1, p_1) S(x_2, p_2) |\Psi^{(2)}(x_1, x_2)|^2 d^4x_1 d^4x_2$
- Correlation function from one- and two-particle momentum distributions:

$$
C_2(p_1,p_2) \! = \! \frac{N_2(p_1,p_2)}{N_1(p_1)N_1(p_2)} \to \Psi \text{ is planewave} \to C_2^{(0)}(q,K) \! \approx \! 1 \! + \! \frac{|\tilde{S}(q,K)|^2}{|\tilde{S}(q\!=\!0,K)|^2}
$$

where $q = p_1 - p_2$ and $K = (p_1 + p_2)/2$

- ⁽⁰⁾ means no final state interaction
- **•** Introducing the spatial correlation as

$$
D(r,K)=\int S(\rho+\frac{r}{2},K)S(\rho-\frac{r}{2},K)d\rho\rightarrow C_{2}^{(0)}(q,K)\approx 1+\frac{\tilde{D}(q,K)}{\tilde{D}(q=0,K)}
$$

The Bose-Einstein correlation measures the spatial correlation!

Lévy-type of source

- Expanding medium, increasing mean free path: anomalous diffusion
- Lévy-distribution from generalized central limit theorem could be valid

$$
S(x,p)=\frac{1}{(2\pi)^3}\int d^3q e^{i\mathbf{q}x}e^{-\frac{1}{2}|\mathbf{x}R|^\alpha}
$$

• Correlation function with Lévy source:

$$
\mathit{C}^{(0)}_{2}(Q)=1+\lambda\cdotp e^{-(RQ)^{\alpha}}
$$

- α = 2 Gaussian (normal diffusion)
- *α <* 2 Lévy (anomalous diffusion)
- Change in $\alpha_{\text{Léov}} \leftrightarrow \text{proximity}$ of CEP?
- Non-static system, finite size effects.

Experimental results – motivation

PHENIX results from different centralities and energies are available

Máté Csanád, Márton Nagy and Sándor Lökös [Coulomb correction for Lévy-type sources](#page-0-0) 5 / 20

Bose-Einstein correlations – distortion effects

There are several effects which could distort this simple picture

- Strong final state interaction (see: Daniel's presentation)
- Resonance effects \rightarrow core-halo model
- Partially coherent particle production
- Squeezed states
- Effect of random phase shifts (see: Ayon's presentation)
- **Coulomb correction**, since we measure (like-)charged pions

The Coulomb final state effect

• Generally the correlation function:

$$
C_2(q) = \frac{\int d^3\mathbf{r} D(\mathbf{r}, \mathbf{K}) |\psi_{\mathbf{q}}^{(2)}(\mathbf{r})|^2}{\int d^3\mathbf{r} D(\mathbf{r}, \mathbf{K})}
$$

No final state interaction $\rightarrow \psi_{\bf q}^{(2)}({\bf r})=1+\cos({\bf qr})$ symmetrized $\rightarrow C_2^{(0)}$ $C_2^{(0)}(q)$ **•** Two-particle Coulomb interacting pair-wave function in the final state:

$$
\psi_{\mathbf{q}}^{(2)}(\mathbf{r}) = \frac{1}{\sqrt{2}} \frac{\Gamma(1+i\eta)}{e^{\pi\eta/2}} \{e^{i\mathbf{kr}} F\left(-i\eta, 1, i(kr - \mathbf{kr})\right) + \left[\mathbf{r} \leftrightarrow -\mathbf{r}\right]\}
$$

For pointlike source: Gamow correction $G(q) = |\psi_{\bf q}^{(2)}(0)|^2 = \frac{2\pi\eta}{e^{2\pi\eta}}$ $e^{2\pi\eta}-1$ with the Sommerfeld parameter: $\eta = \alpha_{\textit{EM}} \frac{m_\pi c}{q}$

- Generally: evaluate the integral \rightarrow Coulomb-correction: $K(q) = \frac{C_2(q)}{C_2^{(0)}(q)}$
- \bullet Complicated integral \rightarrow numerical approaches!

How to handle the Coulomb effect?

- **•** Perform the integral numerically, fill it into a look-up table
- Numerical fluctuations \rightarrow iterative fit (like in SPS):
	- \bullet Fit with the $\mathcal{C}_2^{(0)}$ Lévy-type of correlation function $\Rightarrow \lambda_0, R_0, \alpha_0$
	- **2** Fit with $C_2(q) = C_2^{(0)}(\lambda, R, \alpha; Q) \frac{C_2(\lambda_0, R_0, \alpha_0; Q)}{C_2^{(0)}(\lambda_0, R_0, \alpha_0; Q)}$ $\frac{C_2(\lambda_0, R_0, \alpha_0; Q)}{C_2^{(0)}(\lambda_0, R_0, \alpha_0; Q)} \Rightarrow \lambda_1, R_1, \alpha_1$
	- **3** Repeat while λ_0 , R_0 , α_0 and λ_1 , R_1 , α_1 differ less then 1%
- **This known method was used in** [PRC97 \(2018\) 064911](https://journals.aps.org/prc/abstract/10.1103/PhysRevC.97.064911) **succesfully!**
- Reading a huge binary table and do an iterative fit is a bit slow
- **•** Alternative: use a parametrization
	- **4** Get the table and parametrize the Q dependence for different α and R values \rightarrow several α and R dependent parameters
	- 2 Parametrize the α and R dependence of the parameters!
	- ³ Take care of the out-of-range behavior (smoothings and cut-offs)!
- α α = 1 parametrization from CMS: [PRC 97 \(2018\) 064912](https://journals.aps.org/prc/abstract/10.1103/PhysRevC.97.064911)
- For arbitrary *α*: **[arXiv:1910.02231](https://arxiv.org/abs/1910.02231)**

Numerical table

- Evaluate the integral numerically and fill the values into a binary table
- Use $R_{cc} = 2^{1/\alpha}R$
- **e** Resolutions:
	- $\alpha \in [0.5, 2]$, $\Delta \alpha = 0.00625 \rightarrow N_{\alpha} = 240$ $Q \in [10, 200]$ MeV/c, $\Delta Q = 0.5$ MeV/c → $N_Q = 380$ R_{cc} ∈ [2, 30] fm, $\Delta R_{cc} = 0.01$ fm $\rightarrow N_{R_{cc}} = 2800$
- Number of point: $240 \times 380 \times 2800 = 2.5 \cdot 10^8$
- \bullet Size of table \sim 1 GB
- **•** Interpolation is done via linear interpolation
- For $Q > 200$ MeV gives back the evaluation of $C_2^{(0)}$ $\Gamma_2^{(0)}(Q,\alpha,R)$

Parametrizations

"With six parameters, you can fit even an octopus." Unknown physicist

Parametrization of the Q-dependence with:

 $K_{Cauchy}(q, \alpha = 1, R) = K_{Gamma}(q) \times K_{CMS}(q, \alpha = 1, R)$

• The correction for the Gamow correction

$$
\mathcal{K}_{CMS}(q,\alpha=1,R)=1+\frac{\alpha_{EM} \pi m_{\pi} R}{1.26 \hbar c+q R}
$$

- Advantage: simple, has only one numerical parameter
- Disadvantage: only good for *α* ≈ 1
- Looking for an improved $K_{CMS} \rightarrow K_{mod}$ parametrization ...
	- ... which can follow the weak *α* dependence
	- \bullet ... which can restore the "CMS formula" in case of $\alpha = 1$

$$
K_{mod}(q, \alpha, R) = 1 + \frac{A(\alpha, R) \frac{\alpha_{EM} \pi m_{\pi} R}{\alpha h c}}{1 + B(\alpha, R) \frac{qR}{\alpha h c} + C(\alpha, R) \left(\frac{qR}{\alpha h c}\right)^2 + D(\alpha, R) \left(\frac{qR}{\alpha h c}\right)^4}
$$

The correction in the Lévy case – Q dependence

Máté Csanád, Márton Nagy and Sándor Lökös [Coulomb correction for Lévy-type sources](#page-0-0) 11 / 20

Parameter functions

Four 2D empirical parameter functions:

$$
A(\alpha, R) = (a_A \alpha + a_B)^2 + (a_C R + a_D)^2 + a_E (\alpha R + 1)^2
$$

\n
$$
B(\alpha, R) = \frac{1 + b_A R^{b_B} - \alpha^{b_C}}{\alpha^2 R(\alpha^{b_D} + b_E R^{b_F})}
$$

\n
$$
C(\alpha, R) = \frac{c_A + \alpha^{c_B} + c_C R^{c_D}}{c_E} \left(\frac{\alpha}{R}\right)^{c_F}
$$

\n
$$
D(\alpha, R) = d_A + \frac{R^{d_B} + d_C \alpha^{d_F}}{R^{d_D} \alpha^{d_E}}
$$

- **•** These can describe the α and the R dependencies
- Quite complicated but suitable
- \bullet a_A , a_B , ..., d_F are numbers (see our paper: $arXiv:1910.02231$)

Out-of-range regularization

- We fit to q ∈ [0*.*01*,* 0*.*2] GeV/c
- Beyond the fitted range, the function cannot be used to extrapolate
- Exponential type function parametrized based on the intermediate $q \in [0.1, 0.2]$ GeV/c fits to the numerical table

$$
E(q) = 1 + A(\alpha, R)e^{-B(\alpha, R)q}
$$

with

$$
A(\alpha, R) = A_a + A_b \alpha + A_c R + A_d \alpha R + A_e R^2 + A_f (\alpha R)^2,
$$

\n
$$
B(\alpha, R) = B_a + B_b \alpha + B_c R + B_d \alpha R + B_e R^2 + B_f (\alpha R)^2
$$

where $A_3, A_4, ..., B_f$ are numbers (see our paper: $arXiv:1910.02231$)

Smoothing on the edge

- \bullet Exponential damping factor should be \bullet joined" to the parametrization
- Can be done with a Wood-Saxon-type of cut-off

$$
\digamma(q)=\frac{1}{1+\left(\frac{q}{q_0}\right)^n}
$$

where $q_0 = 0.07$ GeV/c and $n = 20$.

- Previous work has different cut-off functions: $\left(1 + \exp\left[\frac{q-q_0}{D}\right]\right)$ D_q $\bigcup -1$
- The results are quite independent from the choice.
- New $F(q)$ has better behavior.

Example Coulomb corrected Lévy-type of C_2

 α control the shape of the function and R control the width

Máté Csanád, Márton Nagy and Sándor Lökös [Coulomb correction for Lévy-type sources](#page-0-0) 15 / 20

The validity of the parametrization

- *α* ∈ [0*.*8*,* 2*.*0] and R ∈ [2*,* 12] fm
- In these range of the parameters the relative difference of the parametrization and the table is less then 0.06%

Bowler–Sinyukov-method

- Core-halo model: $S=\emptyset$ √ $\lambda \mathcal{S}_c + (1 -$ √ $\overline{\lambda}$) $S_h^{R_h}$
- With two-particle source function:

$$
D(\mathbf{r}, \mathbf{K}) = \lambda D_{cc}(\mathbf{r}, \mathbf{K}) + (1 - \lambda)D_{(h)}(\mathbf{r}, \mathbf{K})
$$

D(h) (**r***,* **K**) contains core − halo and halo − halo parts

$$
C_2(\mathbf{r},\mathbf{K}) \approx \lambda \int d^3\mathbf{r} D_{cc}(\mathbf{r},\mathbf{K}) |\psi_{\mathbf{q}}^{(2)}(\mathbf{r})|^2 + (1-\lambda) \int d^3\mathbf{r} D_{(h)}(\mathbf{r},\mathbf{K}) |\psi_{\mathbf{q}}^{(2)}(\mathbf{r})|^2
$$

• If we take the $R_h \to \infty$ limit (the size of the halo is infinite):

$$
C_2(\mathbf{r}, \mathbf{K}) = 1 - \lambda + \lambda \int d^3 \mathbf{r} D_{cc}(\mathbf{r}, \mathbf{K}) |\psi_{\mathbf{q}}^{(2)}(\mathbf{r})|^2
$$

[Bowler,PLB270 69\(1991\)](https://doi.org/10.1016/0370-2693(91)91541-3) and **[Sinyukov et al.PLB432 248\(1998\)](http://cds.cern.ch/record/336223/files/SCAN-9710082.pdf)**

Final form of the correlation function

- Parametrization of the numerical table: $K(q) = K_{Gamma} \times K_{mod}$
- Exponential function for large q-values: $E(q)$
- Smoothing to "joined" $E(q)$ and $K(q)$: $F(q)$

$$
K(q,\alpha,R)^{-1}=F(q)\times K_{Gamma}^{-1}(q)\times K_{mod}^{-1}(q;\alpha,R)+(1-F(q))\times E(q)
$$

Coulomb corrected correlation function which could be fitted to data with the Bowler–Sinyukov-method:

 $C_2(q;\alpha,R) = [1 - \lambda + K(q;\alpha,R)\lambda(1 + \exp{[|qR|^{\alpha}]})] \cdot ($ assumed background)

Compare with previous fit results

- Test it on data previously fitted with the numerical table
- **Good** agreement

Summary

- Coulomb final state interaction is important in correlation measurements
- For extended source, exact and analytic form is not known
- Experimetal results motivate to investigate the Lévy-case
- Numerical techniques can be employed \rightarrow numerical table
- Parametrization based on the table is more convenient to use
- Parametrization for Lévy sources in *α* ∈ [0*.*8*,* 2*.*0] and R ∈ [2*,* 12] fm
- Paper from our recent results: **[arXiv:1910.02231](https://arxiv.org/abs/1910.02231)**
- Code: **<https://github.com/csanadm/coulcorrlevyparam>**

Thank you for your attention!