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Bose-Einstein correlations – basic definitions

S(x , p) source function, the two-particle wavefunction is symmetrized
Momentum distribution can be calculated:

N1(p) =
∫

S(x , p)|Ψ(1)(x)|2d4x
N2(p) =

∫
S(x1, p1)S(x2, p2)|Ψ(2)(x1, x2)|2d4x1d4x2

Correlation function from one- and two-particle momentum distributions:

C2(p1, p2)= N2(p1, p2)
N1(p1)N1(p2) → Ψ is planewave→ C (0)

2 (q,K )≈1+ |S̃(q,K )|2

|S̃(q=0,K )|2

where q = p1 − p2 and K = (p1 + p2)/2
(0) means no final state interaction
Introducing the spatial correlation as

D(r ,K ) =
∫

S(ρ+ r
2 ,K )S(ρ− r

2 ,K )dρ→ C (0)
2 (q,K ) ≈ 1 + D̃(q,K )

D̃(q = 0,K )

The Bose-Einstein correlation measures the spatial correlation!
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Lévy-type of source

Expanding medium, increasing mean free path: anomalous diffusion
Lévy-distribution from generalized central limit theorem could be valid

S(x , p) = 1
(2π)3

∫
d3qeiqxe−

1
2 |xR|α

Correlation function with Lévy source:

C (0)
2 (Q) = 1 + λ·e−(RQ)α

α = 2 Gaussian (normal diffusion)
α < 2 Lévy (anomalous diffusion)
Change in αLévy ↔ proximity of CEP?
Non-static system, finite size effects...
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Experimental results – motivation
PHENIX results from different centralities and energies are available
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Bose-Einstein correlations – distortion effects

There are several effects which could distort this simple picture

Strong final state interaction (see: Daniel’s presentation)

Resonance effects → core-halo model

Partially coherent particle production

Squeezed states

Effect of random phase shifts (see: Ayon’s presentation)

Coulomb correction, since we measure (like-)charged pions
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The Coulomb final state effect

Generally the correlation function:

C2(q) =
∫

d3rD(r,K)|ψ(2)
q (r)|2∫

d3rD(r,K)

No final state interaction→ ψ
(2)
q (r) = 1+ cos(qr) symmetrized→ C (0)

2 (q)
Two-particle Coulomb interacting pair-wave function in the final state:

ψ
(2)
q (r) = 1√

2
Γ(1+iη)

eπη/2 {e
ikrF (−iη, 1, i(kr−kr)) + [r↔ −r]}

For pointlike source: Gamow correction G(q) = |ψ(2)
q (0)|2 = 2πη

e2πη−1
with the Sommerfeld parameter: η = αEM

mπc
q

Generally: evaluate the integral → Coulomb-correction: K (q) = C2(q)
C (0)

2 (q)

Complicated integral → numerical approaches!
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How to handle the Coulomb effect?

Perform the integral numerically, fill it into a look-up table
Numerical fluctuations → iterative fit (like in SPS):

1 Fit with the C (0)
2 Lévy-type of correlation function ⇒ λ0,R0, α0

2 Fit with C2(q) = C (0)
2 (λ,R, α; Q) C2(λ0,R0,α0;Q)

C (0)
2 (λ0,R0,α0;Q)

⇒ λ1,R1, α1

3 Repeat while λ0,R0, α0 and λ1,R1, α1 differ less then 1%
This known method was used in PRC97 (2018) 064911 succesfully!
Reading a huge binary table and do an iterative fit is a bit slow
Alternative: use a parametrization

1 Get the table and parametrize the Q dependence for different α and R
values → several α and R dependent parameters

2 Parametrize the α and R dependence of the parameters!
3 Take care of the out-of-range behavior (smoothings and cut-offs)!

α = 1 parametrization from CMS: PRC 97 (2018) 064912

For arbitrary α: arXiv:1910.02231

Máté Csanád, Márton Nagy and Sándor Lökös Coulomb correction for Lévy-type sources 8 / 20

https://journals.aps.org/prc/abstract/10.1103/PhysRevC.97.064911
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.97.064911
https://arxiv.org/abs/1910.02231


Numerical table

Evaluate the integral numerically and fill the values into a binary table

Use Rcc = 21/αR

Resolutions:
α ∈ [0.5, 2], ∆α = 0.00625→ Nα = 240
Q ∈ [10, 200] MeV/c, ∆Q = 0.5 MeV/c → NQ = 380
Rcc ∈ [2, 30] fm, ∆Rcc = 0.01 fm → NRcc = 2800

Number of point: 240× 380× 2800 = 2.5 · 108

Size of table ∼ 1 GB

Interpolation is done via linear interpolation

For Q > 200 MeV gives back the evaluation of C (0)
2 (Q, α,R)
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Parametrizations
„With six parameters, you can fit even an octopus.”

Unknown physicist

Parametrization of the Q-dependence with:

KCauchy (q, α = 1,R) = KGamow (q)× KCMS(q, α = 1,R)

The correction for the Gamow correction

KCMS(q, α = 1,R) = 1 + αEMπmπR
1.26~c + qR

Advantage: simple, has only one numerical parameter
Disadvantage: only good for α ≈ 1
Looking for an improved KCMS → Kmod parametrization ...

... which can follow the weak α dependence

... which can restore the „CMS formula” in case of α = 1

Kmod (q, α,R) = 1 +
A(α,R)αEMπmπR

α~c

1 + B(α,R) qR
α~c + C(α,R)

(
qR
α~c

)2
+ D(α,R)

(
qR
α~c

)4
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The correction in the Lévy case – Q dependence

Kmod (q, α,R) = 1 +
A(α,R)αEMπmπR

α~c

1 + B(α,R) qR
α~c + C(α,R)

(
qR
α~c

)2
+ D(α,R)

(
qR
α~c

)4
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Parameter functions

Four 2D empirical parameter functions:

A(α,R) = (aAα + aB)2 + (aCR + aD)2 + aE (αR + 1)2

B(α,R) = 1 + bARbB − αbC

α2R(αbD + bE RbF )

C(α,R) = cA + αcB + cCRcD

cE

(
α

R

)cF

D(α,R) = dA + RdB + dCα
dF

RdDαdE

These can describe the α and the R dependencies
Quite complicated but suitable
aA, aB, ..., dF are numbers (see our paper: arXiv:1910.02231)
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Out-of-range regularization

We fit to q ∈ [0.01, 0.2] GeV/c

Beyond the fitted range, the function cannot be used to extrapolate

Exponential type function parametrized based on the intermediate
q ∈ [0.1, 0.2] GeV/c fits to the numerical table

E (q) = 1 + A(α,R)e−B(α,R)q

with

A(α,R) = Aa + Abα + AcR + AdαR + AeR2 + Af (αR)2,

B(α,R) = Ba + Bbα + BcR + BdαR + BeR2 + Bf (αR)2

where Aa,Ab, ...,Bf are numbers (see our paper: arXiv:1910.02231)
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Smoothing on the edge

Exponential damping factor should be „joined” to the parametrization

Can be done with a Wood-Saxon-type of cut-off

F (q) = 1
1 +

(
q
q0

)n

where q0 = 0.07 GeV/c and n = 20.

Previous work has different cut-off functions:
(
1 + exp

[
q−q0

Dq

])−1

The results are quite independent from the choice.
New F (q) has better behavior.
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Example Coulomb corrected Lévy-type of C2

α control the shape of the function and R control the width
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 = 1.9αR =  8 fm, 

 = 0.8αR = 11 fm, 

 = 1.1αR = 11 fm, 

 = 1.5αR = 11 fm, 

 = 1.9αR = 11 fm, 

 = 0.8αR =  2 fm, 

 = 1.1αR =  2 fm, 

 = 1.5αR =  2 fm, 

 = 1.9αR =  2 fm, 

 = 0.8αR =  5 fm, 

 = 1.1αR =  5 fm, 

 = 1.5αR =  5 fm, 

 = 1.9αR =  5 fm, 

 = 0.8αR =  8 fm, 

 = 1.1αR =  8 fm, 

 = 1.5αR =  8 fm, 

 = 1.9αR =  8 fm, 

 = 0.8αR = 11 fm, 

 = 1.1αR = 11 fm, 

 = 1.5αR = 11 fm, 

 = 1.9αR = 11 fm, 

 = 0.8αR =  2 fm, 

 = 1.1αR =  2 fm, 

 = 1.5αR =  2 fm, 

 = 1.9αR =  2 fm, 

 = 0.8αR =  5 fm, 

 = 1.1αR =  5 fm, 

 = 1.5αR =  5 fm, 

 = 1.9αR =  5 fm, 

 = 0.8αR =  8 fm, 

 = 1.1αR =  8 fm, 

 = 1.5αR =  8 fm, 

 = 1.9αR =  8 fm, 

 = 0.8αR = 11 fm, 

 = 1.1αR = 11 fm, 

 = 1.5αR = 11 fm, 

 = 1.9αR = 11 fm, 

 = 0.8αR =  2 fm, 

 = 1.1αR =  2 fm, 

 = 1.5αR =  2 fm, 

 = 1.9αR =  2 fm, 

 = 0.8αR =  5 fm, 

 = 1.1αR =  5 fm, 

 = 1.5αR =  5 fm, 

 = 1.9αR =  5 fm, 

 = 0.8αR =  8 fm, 

 = 1.1αR =  8 fm, 

 = 1.5αR =  8 fm, 

 = 1.9αR =  8 fm, 

 = 0.8αR = 11 fm, 

 = 1.1αR = 11 fm, 

 = 1.5αR = 11 fm, 

 = 1.9αR = 11 fm, 

 = 0.8αR =  2 fm, 

 = 1.1αR =  2 fm, 

 = 1.5αR =  2 fm, 

 = 1.9αR =  2 fm, 

 = 0.8αR =  5 fm, 

 = 1.1αR =  5 fm, 

 = 1.5αR =  5 fm, 

 = 1.9αR =  5 fm, 

 = 0.8αR =  8 fm, 

 = 1.1αR =  8 fm, 

 = 1.5αR =  8 fm, 

 = 1.9αR =  8 fm, 

 = 0.8αR = 11 fm, 

 = 1.1αR = 11 fm, 

 = 1.5αR = 11 fm, 

 = 1.9αR = 11 fm, 

 = 0.8αR =  2 fm, 

 = 1.1αR =  2 fm, 

 = 1.5αR =  2 fm, 

 = 1.9αR =  2 fm, 

 = 0.8αR =  5 fm, 

 = 1.1αR =  5 fm, 

 = 1.5αR =  5 fm, 

 = 1.9αR =  5 fm, 

 = 0.8αR =  8 fm, 

 = 1.1αR =  8 fm, 

 = 1.5αR =  8 fm, 

 = 1.9αR =  8 fm, 

 = 0.8αR = 11 fm, 

 = 1.1αR = 11 fm, 

 = 1.5αR = 11 fm, 

 = 1.9αR = 11 fm, 

 = 0.8αR =  2 fm, 

 = 1.1αR =  2 fm, 

 = 1.5αR =  2 fm, 

 = 1.9αR =  2 fm, 

 = 0.8αR =  5 fm, 

 = 1.1αR =  5 fm, 

 = 1.5αR =  5 fm, 

 = 1.9αR =  5 fm, 

 = 0.8αR =  8 fm, 

 = 1.1αR =  8 fm, 

 = 1.5αR =  8 fm, 

 = 1.9αR =  8 fm, 

 = 0.8αR = 11 fm, 

 = 1.1αR = 11 fm, 

 = 1.5αR = 11 fm, 

 = 1.9αR = 11 fm, 

 = 0.8αR =  2 fm, 

 = 1.1αR =  2 fm, 

 = 1.5αR =  2 fm, 

 = 1.9αR =  2 fm, 

 = 0.8αR =  5 fm, 

 = 1.1αR =  5 fm, 

 = 1.5αR =  5 fm, 

 = 1.9αR =  5 fm, 

 = 0.8αR =  8 fm, 

 = 1.1αR =  8 fm, 

 = 1.5αR =  8 fm, 

 = 1.9αR =  8 fm, 

 = 0.8αR = 11 fm, 

 = 1.1αR = 11 fm, 

 = 1.5αR = 11 fm, 

 = 1.9αR = 11 fm, 
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The validity of the parametrization

α ∈ [0.8, 2.0] and R ∈ [2, 12] fm
In these range of the parameters the relative difference of the
parametrization and the table is less then 0.06%
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Bowler–Sinyukov-method

Core-halo model: S =
√
λSc + (1−

√
λ)SRh

h
With two-particle source function:

D(r,K) = λDcc(r,K) + (1− λ)D(h)(r,K)

D(h)(r,K) contains core − halo and halo − halo parts

C2(r,K) ≈ λ
∫

d3rDcc(r,K)|ψ(2)
q (r)|2 + (1− λ)

∫
d3rD(h)(r,K)|ψ(2)

q (r)|2

If we take the Rh →∞ limit (the size of the halo is infinite):

C2(r,K) = 1− λ+ λ

∫
d3rDcc(r,K)|ψ(2)

q (r)|2

Bowler,PLB270 69(1991) and Sinyukov et al.PLB432 248(1998)

Máté Csanád, Márton Nagy and Sándor Lökös Coulomb correction for Lévy-type sources 17 / 20

https://doi.org/10.1016/0370-2693(91)91541-3
http://cds.cern.ch/record/336223/files/SCAN-9710082.pdf


Final form of the correlation function

Parametrization of the numerical table: K (q) = KGamow × Kmod

Exponential function for large q-values: E (q)

Smoothing to „joined” E (q) and K (q): F (q)

K (q, α,R)−1 = F (q)× K−1
Gamow (q)× K−1

mod (q;α,R) + (1−F (q))× E (q)

Coulomb corrected correlation function which could be fitted to data
with the Bowler–Sinyukov-method:

C2(q;α,R) = [1− λ+ K (q;α,R)λ (1 + exp [|qR|α])] · (assumed background)
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Compare with previous fit results

Test it on data previously fitted with the numerical table
Good agreement
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Summary

Coulomb final state interaction is important in correlation measurements

For extended source, exact and analytic form is not known

Experimetal results motivate to investigate the Lévy-case

Numerical techniques can be employed → numerical table

Parametrization based on the table is more convenient to use

Parametrization for Lévy sources in α ∈ [0.8, 2.0] and R ∈ [2, 12] fm

Paper from our recent results: arXiv:1910.02231

Code: https://github.com/csanadm/coulcorrlevyparam

Thank you for your attention!
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