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Statistical physics: Fluctuations of a conserved charge 1
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Relativistic system:

creation and annihilation of particle-antiparticle pairs

study charges which are conserved in microscopic interactions

fluctuations by exchange with the heatbath

mean baryon number

〈B〉 =
∂ lnZ

∂ µBT
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Statistical physics: Fluctuations of a conserved charge 2

Higher moments of the (net) baryon number distribution obtained via
derivatives of lnZ :

∂2 lnZ

∂
( µ
T

)2
= 〈N2〉 − 〈N〉2 = µ2 = κ2 = σ2 = VT 3χ2

∂3 lnZ

∂
( µ
T

)3
= 〈N3〉 − 3〈N2〉〈N〉+ 2〈N〉3 = µ3 = κ3 = VT 3χ3

∂4 lnZ

∂
( µ
T

)4
= 〈N4〉 − 4〈N3〉〈N〉 − 3〈N2〉2 + 12〈N2〉〈N〉2 − 6〈N〉4

= µ4 − 3µ2
2 = κ4 = VT 3χ4

Here:

µi : central moments

κi : central cumulants

χi : susceptibilities
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Other coefficients that characterise statistical distribution

Skewness:

S =
κ3

κ
3/2
2

=
µ3

σ3

Kurtosis:

κ =
κ4

κ2
2

=
µ4

µ2
2

− 3
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Volume-independent ratios

Sσ =
κ3

κ2
=
µ3

σ2
=
χ3

χ2
κσ2 =

κ4

κ2
=
µ4

σ2
− 3σ2 =

χ4

χ2
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Why is this interesting?

Because we look for the state of matter where lnZ changes dramatically
(phase transition, crossover).
This should be visible via its derivatives.

Example: rB,042 = χB
4 /χ

B
2 = κσ2 at µB = 0
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FIG. 1. The leading order expansion coe�cients of the cumulant ratios RB
12 (left) and RB

42 (right) versus temperature calculated
on lattices with temporal extent N⌧ , and spatial sizes N� = 4N⌧ . The inset in the right hand figure shows the di↵erence between
the leading order results for the kurtosis ratio RB

42 and the skewness ratio RB
31 normalized to the latter. All expansion coe�cients

have been calculated for strangeness neutral systems, Eq. 7, with an electric charge to baryon number ratio r = 0.4 (Eq. 8).

The grey bands give the continuum extrapolated result for rB,1
12 and, in the case of rB,0

42 , an estimate for the continuum result.
In the right hand figure we also show results from a fit to the preliminary STAR data for the corresponding net proton-number
fluctuations discussed in Section VI. See text for a discussion of the two HRG curves shown in the left hand figure.

neutral case with nQ/nB = 0.4. The maximal di↵er-
ence is reached at T ' 200 MeV where it amounts to
about 12% of rB,0

31 . However, in the crossover region,
145 MeV < T < 165 MeV, which also is the temperature
range of interest for comparison with experimental data,

this di↵erence never exceeds more than 4% of rB,0
31 . The

experimental observation that SP�
3
P /MP and P�

2
P tend

to agree at large
p

s
NN

, although they di↵er from unity,
thus is in accordance with the QCD result,

SB�3
B/MB ' B�2

B for RB
12 ! 0 . (25)

V. NEXT-TO-LEADING ORDER EXPANSIONS
OF CUMULANT RATIOS

The NLO corrections in the series expansion of ratios
RB

nm at fixed temperature as well as on lines in the T -µB

plane have been introduced in Eqs. 9-11 and in Eqs. 14-
16, respectively. We will derive the NLO expansion coef-
ficients in the following and show results for strangeness
neutral systems with an electric charge to baryon num-
ber ratio nQ/nB = 0.4. However, for the discussion pre-
sented in this section we will also use the simpler expres-
sions obtained for the case of vanishing strangeness and
electric charge chemical potentials. In this case the in-
formation contained in the NLO expansion coe�cients is
much more transparent and, as we will see, they show
the same qualitative features and furthermore yield sim-
ilar quantitative results.

The NLO expansions for cumulants and the resulting
expansions of cumulant ratios for arbitrary values of the
chemical potentials ~µ = (µB , µQ, µS) are given in the Ap-
pendix. From these one easily obtains the NLO expan-

sion coe�cients rB,3
12 , rB,2

31 and rB,2
42 for µQ = µS = 0 by

evaluating these expressions for si = qi = 0 for i = 1, 3.
This yields for the ratio of NLO and LO expansion coef-
ficients,

rB,3
12

rB,1
12

= �1

3

�B
4

�B
2

, (26)

rB,2
31

rB,0
31

=
1

6

✓
�B

6

�B
4

� �B
4

�B
2

◆
, (27)

rB,2
42

rB,0
42

= 3
rB,2
31

rB,0
31

. (28)

As the quadratic and quartic cumulants of net baryon-
number fluctuations are positive for all values of the tem-
perature [25], the NLO expansion coe�cient of RB

12 =
MB/�2

B is negative for all T . The NLO expansion co-
e�cient of RB

31 = SB�3
B/MB is negative as long as

�B
6 /�B

4 < �B
4 /�B

2 . As known from the Taylor expan-
sion of the equation of state (Fig. 13 of Ref. [25]) this is
the case at least for T>⇠155 MeV. Furthermore, Eq. 28
explicitly states that the NLO correction to the kurtosis
ratio RB

42 is three times larger than that for the skewness
ratio RB

31 for all T as long as µQ = µS = 0.

Using Eqs. 26 and 27 it also is straightforward to obtain
the NLO expansion coe�cient of RB

32 ⌘ SB�B ,

rB,3
32

rB,1
32

=
rB,2
31

rB,0
31

+
rB,3
12

rB,1
12

=
1

6

�B
6

�B
4

� 1

2

�B
4

�B
2

, (29)

which also is negative at least for T>⇠155 MeV (see Fig. 13
of Ref. [25]).

[A. Bazavov et al., Phys. Rev. D 96 (2017) 074510]
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FIG. 1. The leading order expansion coe�cients of the cumulant ratios RB
12 (left) and RB

42 (right) versus temperature calculated
on lattices with temporal extent N⌧ , and spatial sizes N� = 4N⌧ . The inset in the right hand figure shows the di↵erence between
the leading order results for the kurtosis ratio RB

42 and the skewness ratio RB
31 normalized to the latter. All expansion coe�cients

have been calculated for strangeness neutral systems, Eq. 7, with an electric charge to baryon number ratio r = 0.4 (Eq. 8).

The grey bands give the continuum extrapolated result for rB,1
12 and, in the case of rB,0

42 , an estimate for the continuum result.
In the right hand figure we also show results from a fit to the preliminary STAR data for the corresponding net proton-number
fluctuations discussed in Section VI. See text for a discussion of the two HRG curves shown in the left hand figure.

neutral case with nQ/nB = 0.4. The maximal di↵er-
ence is reached at T ' 200 MeV where it amounts to
about 12% of rB,0

31 . However, in the crossover region,
145 MeV < T < 165 MeV, which also is the temperature
range of interest for comparison with experimental data,

this di↵erence never exceeds more than 4% of rB,0
31 . The

experimental observation that SP�
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P tend
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plane have been introduced in Eqs. 9-11 and in Eqs. 14-
16, respectively. We will derive the NLO expansion coef-
ficients in the following and show results for strangeness
neutral systems with an electric charge to baryon num-
ber ratio nQ/nB = 0.4. However, for the discussion pre-
sented in this section we will also use the simpler expres-
sions obtained for the case of vanishing strangeness and
electric charge chemical potentials. In this case the in-
formation contained in the NLO expansion coe�cients is
much more transparent and, as we will see, they show
the same qualitative features and furthermore yield sim-
ilar quantitative results.

The NLO expansions for cumulants and the resulting
expansions of cumulant ratios for arbitrary values of the
chemical potentials ~µ = (µB , µQ, µS) are given in the Ap-
pendix. From these one easily obtains the NLO expan-

sion coe�cients rB,3
12 , rB,2

31 and rB,2
42 for µQ = µS = 0 by

evaluating these expressions for si = qi = 0 for i = 1, 3.
This yields for the ratio of NLO and LO expansion coef-
ficients,
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As the quadratic and quartic cumulants of net baryon-
number fluctuations are positive for all values of the tem-
perature [25], the NLO expansion coe�cient of RB

12 =
MB/�2

B is negative for all T . The NLO expansion co-
e�cient of RB

31 = SB�3
B/MB is negative as long as

�B
6 /�B

4 < �B
4 /�B

2 . As known from the Taylor expan-
sion of the equation of state (Fig. 13 of Ref. [25]) this is
the case at least for T>⇠155 MeV. Furthermore, Eq. 28
explicitly states that the NLO correction to the kurtosis
ratio RB

42 is three times larger than that for the skewness
ratio RB

31 for all T as long as µQ = µS = 0.

Using Eqs. 26 and 27 it also is straightforward to obtain
the NLO expansion coe�cient of RB

32 ⌘ SB�B ,

rB,3
32

rB,1
32

=
rB,2
31

rB,0
31

+
rB,3
12
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=
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2

�B
4
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, (29)

which also is negative at least for T>⇠155 MeV (see Fig. 13
of Ref. [25]).

[A. Bazavov et al., Phys. Rev. D 96 (2017) 074510]
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FIG. 1. The leading order expansion coe�cients of the cumulant ratios RB
12 (left) and RB

42 (right) versus temperature calculated
on lattices with temporal extent N⌧ , and spatial sizes N� = 4N⌧ . The inset in the right hand figure shows the di↵erence between
the leading order results for the kurtosis ratio RB

42 and the skewness ratio RB
31 normalized to the latter. All expansion coe�cients

have been calculated for strangeness neutral systems, Eq. 7, with an electric charge to baryon number ratio r = 0.4 (Eq. 8).

The grey bands give the continuum extrapolated result for rB,1
12 and, in the case of rB,0

42 , an estimate for the continuum result.
In the right hand figure we also show results from a fit to the preliminary STAR data for the corresponding net proton-number
fluctuations discussed in Section VI. See text for a discussion of the two HRG curves shown in the left hand figure.

neutral case with nQ/nB = 0.4. The maximal di↵er-
ence is reached at T ' 200 MeV where it amounts to
about 12% of rB,0

31 . However, in the crossover region,
145 MeV < T < 165 MeV, which also is the temperature
range of interest for comparison with experimental data,

this di↵erence never exceeds more than 4% of rB,0
31 . The

experimental observation that SP�
3
P /MP and P�

2
P tend

to agree at large
p

s
NN

, although they di↵er from unity,
thus is in accordance with the QCD result,

SB�3
B/MB ' B�2

B for RB
12 ! 0 . (25)
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ficients in the following and show results for strangeness
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sions obtained for the case of vanishing strangeness and
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much more transparent and, as we will see, they show
the same qualitative features and furthermore yield sim-
ilar quantitative results.
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As the quadratic and quartic cumulants of net baryon-
number fluctuations are positive for all values of the tem-
perature [25], the NLO expansion coe�cient of RB

12 =
MB/�2

B is negative for all T . The NLO expansion co-
e�cient of RB

31 = SB�3
B/MB is negative as long as
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4 /�B

2 . As known from the Taylor expan-
sion of the equation of state (Fig. 13 of Ref. [25]) this is
the case at least for T>⇠155 MeV. Furthermore, Eq. 28
explicitly states that the NLO correction to the kurtosis
ratio RB

42 is three times larger than that for the skewness
ratio RB
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which also is negative at least for T>⇠155 MeV (see Fig. 13
of Ref. [25]).

[A. Bazavov et al., Phys. Rev. D 96 (2017) 074510]
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Why is this even more interesting?

Because it could reveal the position of the critical point!
Example: susceptibilities in the Ising model (same universality class)
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FIG. 1. Upper panel: κ2,3,4(H) at fixed t > 0. Lower panel:
the Ising model phase diagram with Line A the maximum of
κ3 (also κ4 = 0), and Line B the maximum of κ4. The curved
lines are example freeze-out lines, drawn to model how they
may pass through the scaling region in QCD.

leading, model-dependent, analytic contributions. Our
strategy is to draw a few generic freeze out lines, de-
picted in the lower panels of Fig. 2 and Fig. 1, then ask
whether there are common features of susceptibilities on
those lines. In Fig. 1, we assume that the freeze out line
is a function of t. Going from high to low t, the sim-
plest case is FO1, which crosses lines A and B once each.
The corresponding κ4-κ3 curve is shown in Fig. 3 with
the curve going anti-clockwise forming a “banana” shape
from high to low t. This figure shows the ordering

tmin,κ4 > tmax,κ3 > tmax,κ4 > 0 , (5)

necessarily arises from the derivative relation between the
κn and κn+1. All features occur at temperature higher
than the critical point temperature. As the fluctuations
become larger closer to the CEP , the closer the freeze
out line to the CEP , the larger and more elongated the
banana is.

In Fig. 1, we also consider a freeze out line FO2 that

FIG. 2. Upper left (right): density plot of κ3 (κ4) in the Ising
model. Regions of κi > 0 are in blue and κi < 0 are in red.
The dotted (black) line is the same as Line A in Fig. 1 and dot-
dashed (red) line the same as Line B. Lower panel: A sketch of
the peaks in χ3 and χ4 on a plausible phase diagram of QCD
together with a hypothetical freeze-out line. Comparison to
the location of the maxima in χ3 and χ4 in Fig. 1 suggests how
the freeze-out line may be mapped into the Ising coordinates.

crosses line B twice. The corresponding κ4-κ3 plot in Fig.
3 also has the banana shape but has two local maximum
peaks in κ4. Those features remain when one plots m2-
m1 instead of κ4-κ3 since κ2 changes slowly when κ3(4)

changes rapidly.

One can draw other possible freeze out lines, but the
feature of an anti-clock wise loop remains, provided the
line remains in the H < 0 half-plane as is physically
sensible for freeze-out in the hadronic phase. This can
be seen from the fact that at high t, the freeze out line
can start from the regime above line A, between lines A
and B, or below line B, while at low t, it goes below line
B. This implies these freeze out lines at high and low t
will look very similar to FO1 and FO2 in Fig. 3 near the
origin. This is enough to decide the loop is anti-clock
wise which is a feature in common with experiment data
[15, 16, 23].

Scenario II: CEP at T <∼ 0—As we argue above,
the banana shape in m2-m1 is due to the scaling symme-
try governed by the CEP . But could this connection be
so strong such that the banana shape is observable even
if the CEP is at T = 0 or even T < 0? One example
is high-Tc superconductors [18]. It is hypothesized that

[J.W. Chen et al.: Phys. Rev. D 95 (2017) 014038]
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Why is this totally exciting?!

Because STAR collaboration measured data which no theoretical model
can reproduce!

Grazyna Odyniec/LBNL - CPOD 2018, September 2018, Corfu, Greece 23Oct. st 24 / 9         Xiaofeng Luo # Quark Matter 2015

Energy Dependence of Moments of Net-proton Distributions 

Net-proton as proxy for net-baryon. 
!  Non-monotonic trend is observed  
for the 0-5% most central Au+Au 
collisions. 
 
!  Separation and flipping for the  
results of 0-5% and 5-10% centrality 
are observed at 14.5 and 19.6 GeV. 
( Oscillation Pattern observed 
Very Interesting !) 

!  UrQMD (no CP) results show 
suppression at low energies  
Consistent with the effects of baryon 
number conservation.

Jochen Thaeder, Mon, 14:30pm, [153] 
Xiaofeng Luo, CPOD2014. 
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�2 = h(N � hNi)2i
S = h(N � hNi)3i/�3

 = h(N � hNi)4i/�4 � 3

Higher moments in BES-I
Excitation function for net-proton high moments (ks2) in 5% most central Au+Au

- Non-monotonic behavior
- Peripheral collisions – smooth trend
- UrQMD (no CP): shows suppression at low energies 

which is due to baryon number conservation

Will the oscillation pattern emerge at lower energies ?
FXT data

STAR, PRL 112 (2014) 032302, CPOD2014, QM2015

M.A.Stephanov, PRL 107, 052301 (2011)

Net proton number fluctuations.

[STAR, PRL 112 (2014) 032302,
CPOD2014, QM2015]

Huge increase of κσ2 = χ4/χ2 at√
sNN = 7.7 GeV.

No theoretical understanding, but look at A. Bzdak et al.
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Measure the net proton number fluctuations

baryon number susceptibilities χB
i calculated on the lattice

enhancement of susceptibilities near the critical point

susceptibilities are measurable as cumulants of baryon number
distribution

B-number not measurable, since no neutrons are measured

Conflict!

susceptibilities are calculated in grand-canonical ensemble
cumulants are measured in real collisions which conserve B, have
limited acceptance, and measure (almost) only protons

many papers devoted to these subjects (!!!)

100% detector efficiency assumed here

Original features here:

rapidity distribution of wounded vs. produced (anti)baryons
isospin memory in wounded nucleons

Boris Tomášik (ČVUT & UMB) Proton number fluctuations 5.12.2019 8 / 20



Our approach: Monte Carlo simulation

baryon number is conserved

only protons and neutrons (and their antiparticles) in the simulations

only a (fluctuating) part of incoming nucleons participate

isospin of individual wounded nucleons is kept

wounded nucleons have double-Gaussian rapidity distribution
protons from this source fluctuate due to:

fluctuations of number of wounded nucleons
random number of protons out of wounded nucleons, track isospin
limited acceptance out of the whole rapidity distribution

additionally produced BB̄-pairs flat in rapidity
(net) protons from this source fluctuate due to:

Poissonian fluctuations of BB̄ pairs with mean proportional to Nwound

random number of protons and antiprotons (p = 1/2)
limited acceptance out of the whole rapidity distribution

⇒ composition wounded/produced protons depends on
energy, centrality, and rapidity window
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Rapidity distribution of wounded nucleons

dNw

dy
(y) =

Nw

2
√

2πσ2
y

{
exp

(
−(y − ym)2

2σ2
y

)
+ exp

(
−(y + ym)2

2σ2
y

)}

Parameter settings:

σy = 0.8

obtain ym from

Np−p̄ =
Z

A

∫ yb

−yb

dNw

dy
dy

where
Np−p̄ in |y | < yb = 0.25
is taken from STAR:

PRC79 (2009) 034909,
PRC96 (2017) 044904
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Illustration for: ym = 1, dy = 0.8
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Rapidity distribution of produced NN̄ pairs

dNBB̄

dy
= NBB̄

C

1 + exp
(
|y |−ym

a

)

Parameter settings:

C =
(
2a ln

(
eym/a + 1

))−1

a = σy/10

obtain NBB̄ from

Np̄ =
1

2

∫ yb

−yb

dNBB̄

dy
dy

where
Np̄ in |y | < yb = 0.25
is taken from STAR:

PRC79 (2009) 034909,
PRC96 (2017) 044904

 0

 1

 2

 3

 4

 5

 6

 7

 8

-4 -2  0  2  4

d
N

B
B

b
a
r/
d

y

y

exp.

Illustration for: ym = 1, a = 0.08
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Other model faetures

Isospin determination

Wounded nucleons remember their isospin. This feature can be
turned off and on.

Wounded proton number thus follows hypergeometric distribution.

A produced nucleon becomes proton with probability 1/2.

Glauber Monte Carlo

we use GLISSANDO 2
[M. Rybczyński et al., Comp. Phys. Commun. 185 (2014) 1759]

centrality is determined based on deposited energy measure
(analogically to experiment)
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Exercise: Baryon number conservation

Moments of baryon number distribution around midrapidity.
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Net proton number: dependence on rapidity window width

Moments of net proton number distribution around midrapidity.
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Dependence on ∆y : fixed Nw vs. Glauber MC

Moments of p − p̄ distribution around y = 0
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Dependence on ∆y : fixed Nw vs. Glauber MC

Moments of p − p̄ distribution around y = 0: zoom into detector coverage
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Net proton number: dependence on rapidity

Moments of p − p̄ distribution for ∆y = 0.5
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Net proton number: dependence on rapidity

Moments of p − p̄ distribution for ∆y = 0.5: zoom into detector coverage
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Dependence on rapidity for different collision energies

Fixed Nw = 338, NBB̄ = 16.94, ym = 1.019, 2× 107 events,
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Glauber MC, 1.2× 106 events
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Net proton number: dependence on centrality

√
sNN = 19.6 GeV: ym = 1.019, NBB̄/Nw = 0.050

Statistics: 2× 107 for fixed Nw , ∼ 5× 105 for Glauber MC
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Sσ and κσ2 are lowered towards more central events of wounded protons
nucleons remember their isospin.
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Net proton number: dependence on collision energy

rapidity bin ∆y = 0.5 around y = 0
Statistics: 2× 107 events for fixed Nw , 1.2× 106 events for Glauber MC
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The importance of produced BB̄ pairs grows with increasing energy.
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Conclusions

Net baryon number fluctuations are sensitive to the statistical
properties of the matter in the phase diagram.

Only (net) proton number in limited detector acceptance is
measurable—this involves other effects on which fluctuations depend.

Exciting data on χ4/χ2 at
√
sNN = 7.7 GeV.

A “minimal” model for proton number fluctuations:

rapidity dependent composition through two components:
wounded nucleons and produced BB̄ pairs

possible “isospin memory” of wounded nucleons

Glauber MC (GLISSANDO 2)

Findings:

rapidity dependence of κσ2 with
√
sNN -dependent minimum

isospin effect: decrease of Sσ and κσ2 with higher centrality

baryon number conservation: decrease of Sσ and κσ2 with lower
energies
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