Traces of nuclear liquid-gas transition in analytic properties of hot QCD

Oleh Savchuk

Physics Department, Taras Shevchenko National University of Kyiv, Ukraine

December 5, 2019

Based on O. Savchuk, V. Vovchenko, R. V. Poberezhnyuk, M. I. Gorenstein, and H. Stoecker, (2019), arXiv:1909.04461 [hep-ph]

Outline

Introduction

Ø Branch points of the nuclear liquid-gas transition

- Analytic expectations
- Model dependence
- Radius of convergence of QCD Taylor expansion
- Onclusions

QCD phase diagram

- Crossover from hadron-resonance gas (HRG) to quark-gluon plasma (QGP) at high temperature and low density
- Hypothetical first order phase transition HRG-QGP at finite baryochemical potential with critical endpoint
- Liquid-gas phase transition with critical point at $T \approx 18$ MeV, $\mu_B \approx 900$ MeV

Lattice QCD

from P. Steinbrecher, arXiv:1807.05607 [hep-lat]

- Numerical study of QCD phase diagram performed via Monte Carlo sampling of configurations on the lattice.
- Due to the sign problem direct approach works only at $\mu_B = 0$.
- Results for nonzero baryochemical potential obtained either by analytic continuation from imaginary μ_B or by computing Taylor expansion coefficients.

Borsanyi et al. (Wuppertal-Budapest); Bazavov et al. (HotQCD); Philipsen, Endrodi, et al. (Frankfurt); ...

Branch points 000000000

Taylor expansion

$$\frac{p(T,\mu_B) - p(T,0)}{T^4} = \sum_{n=1}^{\infty} \frac{\chi_{2n}^B(T)}{(2n)!} \left(\frac{\mu_B}{T}\right)^{2n}$$

- Converges in a circle in complex plane, closest singularity on the boundary.
- One example is the critical point: singularity on the real µ_B-axis.
- The radius of convergence and the closest singularity can be estimated, commonly with:

$$r_n^{\chi} = \left| \frac{c_n}{c_{n+1}} \right|^{1/2}, \quad c_n \equiv \chi_{2n}/(2n)!$$

A. Bazavov et al., arXiv:1701.04325

ntroduction	Branch points	Conclusions
		Ŭ
Muciear matter		

Consists of nucleons: protons and neutrons. Its ground state (P = 0, T = 0) parameters estimated from properties of nuclei:

- Normal nuclear density: $\rho_0 = 0.16 \text{ fm}^{-3}$
- Binding energy E/A = -16 MeV from extrapolation of energy of finite nuclei

Evidence for nuclear liquid-gas transition found experimentally [ALADIN@GSI (1995)]

R. V. Poberezhnyuk, V. Vovchenko, D. V. Anchishkin, and M. I. Gorenstein, arXiv:1708.05605 [nucl-th]

Nuclear matter model parameters are commonly constrained to ground state properties. The phase diagram, e.g. the critical point location, are predicted.

How does the nuclear liquid-gas transition affect QCD analytic properties?

Branch points of a liquid-gas transition

n is a **multi-valued** function of μ . This implies the existence of **branch points**:

$$(\partial \mu / \partial n)_T = 0 \qquad \Rightarrow \qquad \frac{2an_{\mathrm{br}}}{T} (1 - bn_{\mathrm{br}})^2 = 1$$

Branch points of a liquid-gas transition

$$rac{2an_{
m br}}{T}\left(1-bn_{
m br}
ight)^2=1$$

see also V. Vovchenko, C. Greiner, V. Koch, and H. Stoecker, arXiv:1909.02276 [hep-ph]

Quantum van der Waals theory of nuclear matter

V. Vovchenko, D. V. Anchishkin, and M. I. Gorenstein, arXiv:1504.01363 [nucl-th]

QvdW nuclear matter: branch points

Branch points equation for QvdW model:

Nuclear matter branch points: Model dependence

Additional models:

• Skyrme:
$$\mu^* = \mu - U(n)$$
, $U_{sk}(n) = -\alpha \left(\frac{n}{n_0}\right) + \beta \left(\frac{n}{n_0}\right)^{\gamma}$ mean-field

• Walecka:
$$p(T,\mu) = p_{id}(T,\mu^*;m^*) + \frac{(\mu-\mu^*)^2}{2c_v^2} - \frac{(m-m^*)^2}{2c_s^2}$$
 RMF theory

• Mild model dependence, behavior consistent with the classical vdW model

ullet Fermi statistics important at small temperatures, irrelevant at $T\gtrsim$ 80 MeV

vdW-HRG model

At higher temperatures resonances cannot be neglected. Treated using the van der Waals hadron resonance gas (vdW-HRG) model:

- Identical vdW interactions between all baryons
- Baryon-antibaryon, meson-meson, meson-baryon vdW terms neglected
- Baryon vdW parameters extracted from ground state of nuclear matter $(a = 329 \text{ MeV fm}^3, b = 3.42 \text{ fm}^3)$

Three independent subsystems: mesons + baryons + antibaryons

$$p(T, \mu) = p_M(T, \mu) + p_B(T, \mu) + p_{\bar{B}}(T, \mu)$$
$$p_B(T, \mu) = \sum_{j \in B} p_j^{id}(T, \mu_j^{B*}) - a n_B^2$$
$$p_M(T, \mu) = \sum_{j \in M} p_j^{id}(T, \mu_j)$$

$$n_{\mathrm{id}}(T,\mu_B^*) \rightarrow \sum_{j\in B} n_{\mathrm{id}}^j(T,\mu_B^*)$$

V. Vovchenko, M.I. Gorenstein, H. Stoecker, Phys. Rev. Lett. 118, 182301 (2017)

vdW-HRG model

Inclusion of baryon resonances changes the real part of chemical potential branch point coordinates

Radius of convergence

- Radius of convergence reaches values as small as $r_{\mu/T} \approx 2-3$ at T = 140-170~MeV
- Ratio estimator of r_{µ/T} does not converge to a meaningful value, because singularity is located in the complex plane, rather than on the real axis.
- Mercer-Roberts estimator of $r_{\mu/T}$ converges to the correct value. About 8-10 Taylor coefficients required to reach a 10% accuracy.

see also V. Vovchenko, J. Steinheimer, O. Philipsen, and H. Stoecker, arXiv:1711.01261 [hep-ph]

Introduction 0000 Branch points

Conclusions 0

Testing the Taylor expansion

- Taylor expansion diverges for $\mu_B/T > r_{\mu/T}$ but many coefficients needed to see this.
- For μ_B/T > r_{μ/T} the Taylor expansion can at best be viewed as an asymptotic series.

roduction	Branch points	Conclusions
		•

Conclusions

- Nuclear liquid-gas transition implies the existence of branch points in QCD thermodynamic potential.
- At $T > T_c \simeq 20$ MeV the branch points are located in the complex μ_B plane. Model dependence is mild.
- Radius of convergence of QCD Taylor expansion may be as small as $r_{\mu/T} \approx 2-3$ at the T = 140 170 MeV due to the nuclear matter critical point alone.
- Important to be able to distinguish signals of a hypothetical chiral critical point from nuclear matter critical point.

oduction	Branch points	Conclusions
		•

Conclusions

- Nuclear liquid-gas transition implies the existence of branch points in QCD thermodynamic potential.
- At $T > T_c \simeq 20$ MeV the branch points are located in the complex μ_B plane. Model dependence is mild.
- Radius of convergence of QCD Taylor expansion may be as small as $r_{\mu/T} \approx 2-3$ at the T = 140 170 MeV due to the nuclear matter critical point alone.
- Important to be able to distinguish signals of a hypothetical chiral critical point from nuclear matter critical point.

Thank you for attention!