A new family of exact solutions of relativistic viscous hydrodynamics

T. Csörgő ¹,² and G. Kasza ¹,²

¹Wigner Research Center for Physics, Budapest, Hungary
²EKE GYKRC, Gyöngyös, Hungary

Introduction and motivation
Viscous Relativistic Hydro
Multipole solutions with
temperature dependent speed of sound
Family of solutions with temperature profile

Outlook
Summary

Partially supported by
NKTIH FK 123842, FK123959
K 133046 and EFOP 3.6.1-16-2016-00001
Context

Renowned exact solutions, reviewed in arXiv:1805.01427

Landau-Khalatnikov solution: \(\frac{dn}{dy} \sim \text{Gaussian} \)

Hwa solution (1974) – Bjorken: same solution + \(\varepsilon_0 \) (1983)

Chiu, Sudarshan and Wang: plateaux, Wong: Landau revisited

Revival of interest: Zimányi, Bondorf, Garpman (1978)

Buda-Lund model + exact solutions (1994-96)

Biró, Karpenko, Sinyukov, Pratt (2007)

Bialas, Janik, Peschanski, Borsch+Zhdanov (2007)

CsT, Csanád, Nagy (2007-2008)

CsT, Csernai, Grassi, Hama, Kodama (2004)

Gubser (2010-11)

Hatta, Noronha, Xiao (2014-16)

CsT, Kasza, Csanad, Jiang (2017-18)

New simple solutions \rightarrow Evaluation of measurables

Rapidity distribution \rightarrow Advanced initial energy density (Kasza)

Viscous solutions \rightarrow Theorems
Goal

Need for solutions that are:
- explicit
- simple
- accelerating
- relativistic
- viscous

realistic / compatible with the data:
- lattice QCD EoS
- ellipsoidal symmetry
- multipole solution (spectra, v_2, v_3, v_4 ..., HBT)
- finite dn/dy

Some of our recent new exact hydro solutions:
- finite in y: CsT, Kasza, Csanád, Jiang (CKCJ): arXiv.org:1805.01427
- viscous: Csanád, Nagy, Jiang, CsT: arxiv.org:1909.02498

This has been generalized to T-dependent speed of sound to multipole solutions and to spatially dependent T profiles
Self-similar solutions for perfect fluid

Publication (for example):

3D spherically symmetric HUBBLE flow:
No acceleration:
\[u^\mu \partial_\mu u_\nu = 0. \]
\[u^\mu = \frac{x^\mu}{\tau} \]

Define a scaling variable for self-similarly expanding ellipsoids:
\[s = \frac{r_x^2}{X_0^2 t^2} + \frac{r_y^2}{Y_0^2 t^2} + \frac{r_z^2}{Z_0^2 t^2} \]

EoS: (massive)
ideal gas
\[\epsilon = mn + \kappa p, \]
\[p = nT. \]
\[\epsilon_Q = m_Q n_Q + \lambda_\epsilon n_Q T + B, \]
\[p_Q = \lambda_p n_Q T - B, \]
\[n(t, r) = n_0 \left(\frac{\tau_0}{\tau} \right)^3 V(s) \]
\[T(t, r) = T_0 \left(\frac{\tau_0}{\tau} \right)^{3/\kappa} \frac{1}{V(s)} \]
\[p(t, r) = p_0 \left(\frac{\tau_0}{\tau} \right)^{3+3/\kappa} \]

Scaling function \(V(s) \) can be chosen freely.
Shear and bulk viscous corrections in NR limit: known analytically.
New, exact solutions with viscosity

\[T^{\mu \nu} = e u^\mu u^\nu - p \Delta^{\mu \nu} + \Pi^{\mu \nu} = T_0^{\mu \nu} + \Pi^{\mu \nu}, \]

\[\Pi^{\mu \nu} = \pi^{\mu \nu} + \Delta^{\mu \nu} \Pi, \]

\[e = \kappa p, \quad p = nT, \]

\[\partial_\mu (N^\mu) = 0. \]

\[D e = -(e + p + \Pi) \theta + \sigma_{\mu \nu} \pi^{\mu \nu}, \]

\[(e + p + \Pi) D u^\alpha = \nabla^\alpha (p + \Pi) - \Delta^\alpha_{\nu} u_\mu D_{\pi^{\mu \nu}} - \Delta^\alpha_{\nu} \nabla_\mu \pi^{\mu \nu}, \]

\[S = \frac{r_x^2}{X^2} + \frac{r_y^2}{Y^2} + \frac{r_z^2}{Z^2}, \]

\[u^{\mu} = \frac{x^{\mu}}{\tau} = \gamma \left(1, \frac{\dot{X}}{X} r_x, \frac{\dot{Y}}{Y} r_y, \frac{\dot{Z}}{Z} r_z \right), \]

\[\theta = \partial_\mu u^\mu = \frac{d}{\tau}, \quad D = u^\mu \partial_\mu = \frac{\partial}{\partial \tau}. \]

\[\tau = \sqrt{t^2 - r^2} \]

\[\eta_s = \frac{1}{2} \ln \left(\frac{t + r_z}{t - r_z} \right) \]

\[\sigma_{\mu \nu} \pi^{\mu \nu} = 0, \]

\[\zeta/s \quad \eta/s \]

Csanád, Nagy, Jiang, CsT:

arxiv.org:1909.02498

Zimanyi’19@Budapest, 2019/12/05
Exact solution with viscosity

Csanád, Nagy, Jiang, CsT:
arxiv.org:1909.02498

Case A: No conserved n, and constant ζ:
$\zeta = \zeta_0 \text{ (const)}, \quad \varepsilon = \kappa p, \quad p = p_0 (T/T_0)^{\kappa+1}$.

Case B: With conserved n, and constant ζ:
$\zeta = \zeta_0 \text{ (const)}, \quad \varepsilon = \kappa p, \quad p = nT$.

Case C: No conserved n, and $\zeta \propto s$:
$\zeta = \zeta_0 (T/T_0)^{\kappa}, \quad \varepsilon = \kappa p, \quad p = p_0 (T/T_0)^{\kappa+1}$.

Case D: With conserved n, and $\zeta/n = \text{const}$:
$\zeta = \zeta_0 (n/n_0), \quad \varepsilon = \kappa p, \quad p = nT$.

Case E: With conserved n, and “$\zeta \propto s$”:
$\zeta = \zeta_0 (T/T_0)^{\kappa}, \quad \varepsilon = \kappa p, \quad p = nT$.

Case A:

$$p(\tau) = \left[p_0 - \frac{d^2}{(\kappa+1)d - \kappa \tau_0} \right] \left(\frac{\tau_0}{\tau} \right)^{\frac{\kappa+1}{\kappa}} + \frac{d^2}{(\kappa+1)d - \kappa \tau} \frac{\zeta_0}{\tau_0}.$$

Case C:

$$p(\tau) = p_0 \left\{ \left(1 + \frac{d^2}{(\kappa+1)(\kappa-d) p_0 \tau_0} \right) \left(\frac{\tau_0}{\tau} \right)^{\frac{\kappa}{\kappa+1}} - \frac{d^2}{(\kappa+1)(\kappa-d) p_0 \tau_0} \frac{\zeta_0}{\tau_0} \right\}^{\frac{\kappa+1}{\kappa}},$$

Case D:

$$p(\tau) = \left[p_0 + \frac{d^2}{\kappa-d \tau_0} \zeta_0 \left(\frac{\tau_0}{\tau} \right)^{\frac{\kappa+1}{\kappa}} - \frac{d^2}{\kappa-d \tau_0} \frac{\zeta_0}{\tau_0} \right] - \frac{d^2}{\kappa-d \tau_0} \frac{\zeta_0}{\tau_0} \tau^{d+1}.$$
Bulk viscosity important at late stage, heats up
Shear viscosity effects cancel for asymptotically Hubble flows
New viscous solutions in 1+3 dim

CsT and G. Kasza

1st solution: $\mu \neq 0, \rho = nT$

Energy conservation:

$$\partial_\tau [\kappa(T)nT] + [1 + \kappa(T)]nT \frac{d}{\tau} = \frac{d^2}{\tau^2} \zeta$$

Using the continuity equation:

$$\frac{1}{T}\partial_\tau (\kappa T) + \frac{d}{\tau} = \frac{d^2}{\tau^2} \frac{\zeta}{nT}$$

In the right hand side let’s define $f(T)$:

$$f(T) = \frac{\zeta}{nT}$$

With that, we have:

$$\frac{\dot{T}}{T} \frac{d}{dT}(\kappa T) + \frac{d}{\tau} = \frac{d^2}{\tau^2} f(T)$$

where $\kappa = \kappa(T)$ and $\dot{T} = \partial_\tau T$. We introduce the $g(T)$ function as

$$g(T) = \frac{d}{dT}(\kappa T)$$

so the energy equation becomes:

$$\frac{\dot{T}}{T} g(T) + \frac{d}{\tau} = \frac{d^2}{\tau^2} f(T)$$

T-dependent speed of sound
Case 1/A: \(f = f_0 \) = const and \(\kappa(T) = \kappa_0 = \text{const} \)
\(\kappa = \kappa_0 \) is constant, so \(g(T) \) is:
\[
g(T) = \kappa_0
\]
In this case the energy equation is:
\[
\frac{\dot{T}}{T^{\kappa_0}} + \frac{d}{\tau} = \frac{d^2}{\tau^2} f_0
\]
By integration we obtain:
\[
T = T_0 \left(\frac{\tau_0}{\tau} \right)^{\frac{d}{\kappa_0}} \exp \left(\frac{f_0 d^2}{\kappa_0} \left[\frac{1}{\tau_0} - \frac{1}{\tau} \right] \right)
\]

Case 1/B: \(f = f_0 \) = const, \(\kappa = \kappa(T) \), but \(g(T) \) = const

Let \(g(T) = g_0 \) be:
\[
g_0 = \frac{\kappa_c T_c - \kappa_f T_f}{T_c - T_f}
\] \hspace{1cm} (15)

The energy equation is the same as the one in Case 1/A, only \(\kappa_0 \) is substituted by \(g_0 \):
\[
\frac{\dot{T}}{T} g_0 + \frac{d}{\tau} = \frac{d^2}{\tau^2} f_0
\] \hspace{1cm} (16)

So the solution is:
\[
T = T_0 \left(\frac{\tau_0}{\tau} \right)^{\frac{d}{g_0}} \exp \left(\frac{f_0 d^2}{g_0} \left[\frac{1}{\tau_0} - \frac{1}{\tau} \right] \right)
\] \hspace{1cm} (17)
\[
T = T_0 \left(\frac{\tau_0}{\tau} \right)^{\frac{d(T_c - T_f)}{\kappa_c T_c - \kappa_f T_f}} \exp \left(\frac{f_0 d^2 (T_c - T_f)}{\kappa_c T_c - \kappa_f T_f} \left[\frac{1}{\tau_0} - \frac{1}{\tau} \right] \right)
\] \hspace{1cm} (18)

T-dependent speed of sound

Bulk viscosity effect at late time: same as rescaling \(T_{\text{init}} \) for a perfect fluid
New viscous solutions in 1+3 dim

T-dependent speed of sound

Bulk viscosity effect at late time:
same as rescaling T_{init}
for a perfect fluid

Case 1/B: $f = f_0 = \text{const}$, $\kappa = \kappa(T)$, but $g(T) = \text{const}$

Let $g(T) = g_0$ be:

$$g_0 = \frac{\kappa_c T_c - \kappa_f T_f}{T_c - T_f}$$

(15)

The energy equation is the same as the one in Case 1/A, only κ_0 is substituted by g_0:

$$\frac{\dot{T}}{T} g_0 + \frac{d}{\tau} = \frac{d^2}{\tau^2} f_0$$

(16)

So the solution is:

$$T = T_0 \left(\frac{\tau}{\tau_0} \right) \frac{d}{g_0} \exp \left(\frac{f_0 d^2}{g_0} \left[\frac{1}{\tau_0} - \frac{1}{\tau} \right] \right)$$

(17)

$$T = T_0 \left(\frac{\tau}{\tau_0} \right) \frac{d(T_c - T_f)}{\kappa_c T_c - \kappa_f T_f} \exp \left(\frac{f_0 d^2 (T_c - T_f)}{\kappa_c T_c - \kappa_f T_f} \left[\frac{1}{\tau_0} - \frac{1}{\tau} \right] \right)$$

(18)
New viscous solutions in 1+3 dim

2nd solution: $\mu = 0$, $p = T\sigma/(1 + \kappa)$

Energy conservation:

$$\partial_\tau [\kappa(T)p] + T\sigma \frac{d}{\tau} = \frac{d^2}{\tau^2} \zeta$$

Since $dp = \sigma d\tau$:

$$\dot{T}\sigma \left[\frac{T}{1+\kappa} \frac{\partial \kappa}{\partial T} + \kappa \right] + T\sigma \frac{d}{\tau} = \frac{d}{\tau}$$

In the right hand side let’s define $f(T)$:

$$f(T) = \frac{\zeta}{T\sigma}$$

With that, we have:

$$\left[(1 + \kappa) \frac{d}{d\tau} \left(\frac{\kappa T}{1 + \kappa} \right) \right] \frac{\dot{T}}{T} + \frac{d}{\tau} = \frac{d^2}{\tau^2} f(T)$$

where $\kappa = \kappa(T)$ and $\dot{T} = \partial_\tau T$. We introduce the $g(T)$ function as

$$g(T) = (1 + \kappa) \frac{d}{d\tau} \left(\frac{\kappa T}{1 + \kappa} \right)$$

so the energy equation becomes:

$$\frac{\dot{T}}{T}g(T) + \frac{d}{\tau} = \frac{d^2}{\tau^2} f(T)$$

T-dependent speed of sound

Now for $\mu_B = 0$ case

Bulk viscosity effect at late time:

same as rescaling T_{init}

for a perfect fluid

Case 2/A: $f = f_0 =$ const and $\kappa(T) = \kappa_0 =$ const

The result is completely the same as the one we saw in case 1/A. The only difference is the definition of f_0:

$$f_0^{(2/A)} = \frac{\zeta}{T\sigma} \leftrightarrow f_0^{(1/A)} = \frac{\zeta}{\pi T} \quad (25)$$

Case 2/B: $f = f_0 =$ const, $\kappa = \kappa(T)$, but $g(T) =$ const

The result is completely the same as the one we saw in case 1/B. The only difference is the definition of f_0 and g_0:

$$g_0^{(2/B)} = \kappa_0 \leftrightarrow g_0^{(1/B)} = \frac{\kappa_0 T \tau - \kappa f T_f}{T_e - T_f} \quad (26)$$
Conclusions

Explicit solutions of a very difficult problem

New exact solutions
for Hubble flows
for arbitrary EOS with const e/p
with T dependent e/p
for temperature profiles
for multipole solutions*

shear effects cancel at late time
bulk viscosity heats up matter
Late time evolution \sim perfect fluid, with rescaled T_{init}

A lot to do ...
E.g. rotating viscous solutions
Thank you for your attention

Questions and Comments?
Consider a 1+1 dimensional, finite, expanding fireball

Assume: $\Omega = \Omega(\eta_x)$

Notation T. Cs., G. Kasza, M. Csanád, Z. Jiang, \url{arXiv.org:1805.01427}
Hydro in Rindler coordinates, new sol

\[\partial_v T^{\mu\nu} = 0, \]
\[\partial_{\mu}(\sigma u^\mu) = 0, \]

Assumptions of TCs, Kasza, Csanád and Jiang, [arXiv.org:1805.01427]:

\[\Omega = \Omega(\eta_x), \quad \varepsilon = \kappa \rho, \quad p = \frac{T\sigma}{1 + \kappa}. \]

For the entropy density, the continuity equation is solved.

From energy-momentum conservation, the Euler and temperature equations are obtained:

\[\partial_{\eta_x} \Omega + \kappa (\tau \partial_\tau + \tanh(\Omega - \eta_x) \partial_{\eta_x}) \ln(T) = 0, \]
\[\partial_{\eta_x} \ln(T) + \tanh(\Omega - \eta_x) (\tau \partial_\tau \ln(T) + \partial_{\eta_x} \Omega) = 0. \]
A New Family of Exact Solutions of Hydro

\[\eta_x(H) = \Omega(H) - H, \]
\[\Omega(H) = \frac{\lambda}{\sqrt{\lambda - 1}\sqrt{\kappa - \lambda}} \arctan \left(\sqrt{\frac{\kappa - \lambda}{\lambda - 1}} \tanh(H) \right), \]
\[\sigma(\tau, H) = \sigma_0 \left(\frac{\tau_0}{\tau} \right)^\lambda \mathcal{V}_\sigma(s) \left[1 + \frac{\kappa - 1}{\lambda - 1} \sinh^2(H) \right]^{-\frac{\lambda}{2}}, \]
\[T(\tau, H) = T_0 \left(\frac{\tau_0}{\tau} \right)^{\frac{\lambda}{\kappa}} \mathcal{T}(s) \left[1 + \frac{\kappa - 1}{\lambda - 1} \sinh^2(H) \right]^{-\frac{\lambda}{2\kappa}}, \]
\[\mathcal{T}(s) = \frac{1}{\mathcal{V}_\sigma(s)}, \]
\[s(\tau, H) = \left(\frac{\tau_0}{\tau} \right)^{\lambda - 1} \sinh(H) \left[1 + \frac{\kappa - 1}{\lambda - 1} \sinh^2(H) \right]^{-\lambda/2}. \]
A New Family of Exact Solutions of Hydro

New: not discovered before, as far as we know ...

Family: For each positive scaling function \(\tau(s)\), a different solution, with same \(T_0, s_0, \kappa, \lambda\)

Not self-similar: Coordinate dependenc NOT on scaling variable \(s\) ONLY, but additional dependence on \(H = H(\eta_x)\) too.

Explicit and Exact: Fluid rapidity, temperature, entropy density explicitly given by formulas

\[
\begin{align*}
\eta_x(H) &= \Omega(H) - H, \\
\Omega(H) &= \frac{\lambda}{\sqrt{\lambda - 1} \sqrt{\kappa - \lambda}} \arctan\left(\sqrt{\frac{\kappa - \lambda}{\lambda - 1}} \tanh(H) \right), \\
\sigma(\tau, H) &= \sigma_0 \left(\frac{\tau_0}{\tau}\right)^\lambda \mathcal{V}_\sigma(s) \left[1 + \frac{\kappa - 1}{\lambda - 1} \sinh^2(H)\right]^{-\frac{1}{2}},
\end{align*}
\]

\[
\begin{align*}
T(\tau, H) &= T_0 \left(\frac{\tau_0}{\tau}\right)^\frac{\lambda}{\kappa} \mathcal{T}(s) \left[1 + \frac{\kappa - 1}{\lambda - 1} \sinh^2(H)\right]^{-\frac{1}{2\kappa}}, \\
\mathcal{T}(s) &= \frac{1}{\mathcal{V}_\sigma(s)}, \\
s(\tau, H) &= \left(\frac{\tau_0}{\tau}\right)^{\lambda - 1} \sinh(H) \left[1 + \frac{\kappa - 1}{\lambda - 1} \sinh^2(H)\right]^{-\lambda/2}.
\end{align*}
\]

New feature: Solution is given as \textit{parametric curves of} \(H\) in \(\eta_x\):

\[
(\eta_x(H), \Omega(H, \tau))
\]

Simplification, for now: limit the solution in \(\eta_x\) where parametric curves correspond to \textit{functions}
Illustration: results for T

Figure 1. Temperature maps in the forward light cone from our new, longitudinally finite solutions for $\kappa = \varepsilon/p = 3$ (left column) and for $\kappa = 7$ (right column) evaluated for the acceleration parameters $\lambda = 1.08$ (top row) corresponding to a broader rapidity distribution and for $\lambda = 1.16$ (bottom row) corresponding to a narrower rapidity distribution, approximately corresponding to heavy ion collisions at $\sqrt{s_{NN}} = 200$ GeV RHIC and $\sqrt{s_{NN}} = 2.76$ TeV LHC energies.
Figure 3. Fluid rapidity Ω maps in the forward light cone from our new, longitudinally finite solutions are shown for $\kappa = \varepsilon/p = 3$ (left column) and for $\kappa = 7$ (right column) evaluated for the acceleration parameters $\lambda = 1.01, 1.02, 1.04$ and 1.08 (from top to bottom rows) corresponding to nearly flat and with increasing λ, gradually narrowing rapidity distributions.
Perfect fluid hydrodynamics

Energy-momentum tensor:

\[T_{\mu\nu} = w u_\mu u_\nu - p g_{\mu\nu} \]

\[w = \varepsilon + p \]

\[\partial_\nu T^{\mu\nu} = 0 \]

Relativistic Euler equation:

\[w u^\nu \partial_\nu u^\mu = (g^{\mu\rho} - u^\mu u^\rho) \partial_\rho p \]

Energy conservation:

\[w \partial_\mu u^\mu = -u^\mu \partial_\mu \varepsilon \]

Charge conservation:

\[\sum \mu_i \partial_\mu (n_i w^\mu) = 0 \]

Consequence is entropy conservation:

\[\partial_\mu (\sigma u^\mu) = 0. \]
New, exact solution with bulk viscosity

\[u^\mu = \frac{x^\mu}{\tau} = \gamma \left(1, \frac{\dot{X}}{X} r_x, \frac{\dot{Y}}{Y} r_y, \frac{\dot{Z}}{Z} r_z \right), \]

\[\frac{de}{d\tau} + \frac{d(e + p)}{\tau} - \zeta \left(\frac{d}{\tau} \right)^2 = 0. \]

\[e = e_0 \left(\frac{\tau_0}{\tau} \right)^{(1 + \frac{1}{\kappa}) d} + \zeta \frac{d}{\tau} \left(1 + \frac{1}{\kappa} \right) d - 1, \]

\[v = \frac{r}{t} \quad \text{or} \quad u^\mu = \frac{x^\mu}{\tau}, \]

\[n = n_0 \left(\frac{\tau_0}{\tau} \right)^3 \mathcal{V}(s), \]

\[p = p_0 \left(\frac{\tau_0}{\tau} \right)^3 \left(1 + \frac{1}{\kappa} \right) + \zeta \frac{3}{\kappa \tau} \frac{3}{\left(1 + \frac{1}{\kappa} \right)^3 - 1}, \]

\[T = T_0 \left(\frac{\tau_0}{\tau} \right)^{\frac{3}{3}} + \zeta \frac{3}{\kappa n_0 \tau} \frac{3}{\tau_0} \frac{3}{\left(1 + \frac{1}{\kappa} \right)^3 - 1} \mathcal{T}(s), \]

\[\theta = \partial_\mu u^\mu = \frac{d}{\tau}, \]

\[D = u^\mu \partial_\mu = \frac{\partial}{\partial \tau}. \]

\[\tau = \sqrt{t^2 - r^2}, \]

\[\eta_s = \frac{1}{2} \ln \left(\frac{t + r_z}{t - r_z} \right). \]