CMS Trigger System

Koushik Mandal

Eötvös Loránd University, Budapest

On behalf of the CMS Collaboration

Zimányi School, 2019

Collisions at LHC

- Instantaneous luminosity ~ 10³⁴ / (s · cm²) or 10 Hz/nb
 Peak instantaneous luminosity ~ 1.8·10³⁴ / (s · cm²)
- 30-40 collisions per bunch crossing
- Very large number of collision events per second
- ~ 40 PB data per second!
- Do all events have information we are looking for?

- Beams of protons or heavy ions accelerated with energy of TeV scale
- Particles circulate in bunches
- 25 ns bunch crossing typically gives 40 MHz bunch collision rate
 - > Designed 2808 bunches/beam results in 32 MHz rate

Koushik Mandal

CMS Trigger System

Impossible

to store

Physics Process Rate

3

Principles of Trigger Systems

- Selection of events based on event topology
 - Final state detector signature
- Trigger system decides to store or reject an event
 - Once rejected by trigger, event is lost forever
- Efficient and clean decision
 - Select (almost) all "signal" events and throw away (almost) all uninteresting events
- Trigger universality
 - Ready for unexpected signatures
 - Should accept wide variety of events
 - Need unbiased collision event sample (only require activity in detector forward region)
 - ★ Minimum bias events
- Rate and time constraints
 - Selected event rate cannot exceed DAQ bandwidth
 - (100 kHz, 200 GB/s)
 - > Processing time should fit pipeline and buffer sizes $(3.8 \,\mu s)$

Koushik Mandal

CMS Detector and Trigger

Koushik Mandal

Level 1 (L1) Trigger : I

- Each event is analyzed with information from Calorimeter & Muon systems
- Dedicated electronics @ 40 MHz
- Pipeline processing with 3.8 μ s latency
- Reconstruct trigger objects like muon, e/γ, tau candidates, jets and E_T sums
- A set of requirements on trigger objects

 → L1 trigger menu
 ~400 requirements in a logical OR
 for pp collision
- L1 trigger sends accept signal to detector DAQ to read out full collision event data if at least one requirement passed

Koushik Mandal

L1 trigger Performance

Trigger performances measured in collisional data

Are triggers efficient to select events that we want to analyse "offline"?

Koushik Mandal

High Level Trigger (HLT)

- HLT selection runs on online event filter farm with over 30,000 CPU cores & 60,000 threads
- 100 kHz input rate allows ~350 ms per event to reach decision with present computing resource
- Two parts: event building and trigger filtering
- Trigger decision structured around HLT "paths"
 - HLT menu
 ~700 requirements in a logical OR for pp collision
- HLT paths consist of reconstruction and filtering algorithms
- The event taken if at least one path passed

Two stages filtering to reduce processing time

Koushik Mandal

HLT Performance

Trigger requirements depend on the given physics analysis strategy

Heavy Ion Trigger

- Same L1 & HLT trigger system used for heavy ion (HI) collision data taking
- Different L1 & HLT requirements
- Condition for HI is different from pp collision
 - Larger bunch spacing (75 or 100 ns)
 - > Lower inst. Luminosity ~ 10^{27} / (s · cm²)
 - ➢ Interaction rate @~200 kHz
- Larger number of particles in head-on collision
 Larger event size ~3 MB
- Type of physics objects or events used in trigger
 - Hadronic interactions (minimum bias)
 - Electrons, muons
 - Photons

Lower threshold on p_{τ} , E_{τ}

- Jets
- High-multiplicity events

Koushik Mandal

Summary

- LHC produces pp and heavy ion collision data with very high rate
- CMS stores collision data with affordable rate utilizing two-level trigger system
- Efficient real-time event selection for physics analysis
- First step in any analysis we do; very important!
- A lot of (wo)man power towards the maintenance and improvement of trigger system

Thank You!

Back Up

Koushik Mandal

CMS Trigger System

12