Central exclusive $\pi^+\pi^-$ production in pp collisions at $\sqrt{s} = 5.02$ and 13 TeV in the CMS experiment

Olivér Surányi

on behalf of CMS Collaboration

Eötvös Loránd University
Wigner RCP
Budapest, Hungary

5th December 2019
Central exclusive production

Double pomeron exchange (DPE)
\[l^G(J^{PC}) = 0^+ (J^{++}), \ J \text{ is even} \]
For example: \(f_0(500), f_0(980), f_2(1270), f_0(1710) \)

Vector meson photoproduction (VMP)
\[l(J^{PC}) = 0, 1(1^{--}) \]
For example: \(\rho(770), \phi(1020) \)
Motivations:

- Restricted quantum numbers
- Filter certain low mass resonances
- Gluon-rich environment in DPE \rightarrow glueball search
Central exclusive dipion production at CMS

Measurement of total and differential cross sections of central exclusive $\pi^+\pi^-$ production in proton-proton collisions at 5.02 and 13 TeV

CMS-PAS-FSQ-16-006 – http://cds.cern.ch/record/2679648
Dataset, trigger, event selections

Dataset: low-pileup data in 2015 at
- $\sqrt{s} = 5.02$ TeV, $522 \mu b^{-1}$
- $\sqrt{s} = 13$ TeV, $258 \mu b^{-1}$

Trigger: random bunch-crossings (zero bias)

Event selection:
- Exactly two, oppositely charged tracks
- No activity in calorimeters, except 3σ cone around extrapolated track hit in η and ϕ
- π identification via dE/dx
- $p_T(\pi) > 0.2$ GeV, $|\eta(\pi)| < 2.4$
Particle identification

- dE/dx measured from charge in the silicon tracker
- p-slices fitted with Gaussians
- High π identification efficiency \rightarrow large K contamination, treated in the analysis
Multihadron background estimation

Using a sample with extra calorimeter hits
Background distribution from events with 2 – 5 extra calorimeter hits
Normalisation based on same sign distribution
Systematic uncertainties from varying control region

<table>
<thead>
<tr>
<th>Calorimeter</th>
<th>Threshold [GeV]</th>
<th>η coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECAL barrel</td>
<td>0.6</td>
<td>$</td>
</tr>
<tr>
<td>ECAL endcap</td>
<td>3.3</td>
<td>$1.5 <</td>
</tr>
<tr>
<td>HCAL barrel</td>
<td>2.0</td>
<td>$</td>
</tr>
<tr>
<td>HCAL endcap</td>
<td>3.8</td>
<td>$1.3 <</td>
</tr>
<tr>
<td>HF</td>
<td>4.0</td>
<td>$3.15 <</td>
</tr>
</tbody>
</table>
Background estimation

CMS Preliminary 258 µb⁻¹ (13 TeV)

- **OS tracks**
 - Identified pion pair
 - Background in 0 bin
 - Background in 2-5 bin

- **SS tracks**
 - Identified pion pair
 - Background in 0 bin
 - Background in 2-5 bin

Normalization calculated from SS events using the assumption:

\[
\frac{\# \text{ OS BKG, 0 towers}}{\# \text{ OS, 2-5 towers}} = \frac{\# \text{ SS, 0 towers}}{\# \text{ SS, 2-5 towers}}
\]
• **Multihadron background:** events with 2 – 5 extra calorimeter hits

• **Exclusive KK background:** exclusive pairs with at least one identified kaon
 - Normalization: calculated from dE/dx fits

• Subtracting background distribution from the measured results
Monte Carlo simulations:
- **STARLIGHT**: exclusive $\rho(770)$ photoproduction.
- **DIME MC**: DPE continuum contribution.

No simulation describes certain low mass resonances (f_0 and f_2).

Total exclusive $\pi^+\pi^-$ cross section in $p_T(\pi) > 0.2$ GeV, $|\eta| < 2.4$ region:

$$\sigma(\sqrt{s} = 5.02 \text{ TeV}) = 19.6 \pm 0.4 \text{ (stat.)} \pm 3.3 \text{ (syst.)} \pm 0.01 \text{ (lumi.)} \, \mu\text{b}$$

$$\sigma(\sqrt{s} = 13 \text{ TeV}) = 19.0 \pm 0.6 \text{ (stat.)} \pm 3.2 \text{ (syst.)} \pm 0.01 \text{ (lumi.)} \, \mu\text{b}$$
Results – invariant mass distribution

- Enhancement in $\rho(770)$ region
- Sharp drop at around 1 GeV
 - Indication of $f_0(980)$ resonance
 - Interference between resonance and continuum
- Significant peak at $f_2(1270)$
- Dime MC overestimates 1500 MeV region
Describing the mass spectrum

- QM amplitude of CEP processes:
 \[A_{\text{CEP}} = A^{\pi\pi-\text{continuum}} + \sum_i A_i^{\text{resonant}} \]

- Interference appears in \(\sigma \propto |A_{\text{CEP}}|^2 \)

- Theory results: < 1% interference between VMP and DPE

- Fit function:
 \[f(x) = |A^\rho(x)|^2 + \left| \sum_i A_i^{\text{DPE}}(x)e^{i\phi_i} + \sqrt{b \cdot B^{\text{DIME}}(x)} \right|^2 \]

 \(A_i(x) \): relativistic Breit-Wigner amplitude
 \(\phi_i \): phase angle to describe interference
Describing the mass spectrum

- Fit function:

\[
f(x) = |A^0(x)|^2 + \left| \sum_i A_i^{\text{DPE}}(x)e^{i\phi_i} + \sqrt{b \cdot B^{\text{DIME}}(x)} \right|^2
\]

- Relativistic Breit-Wigner amplitudes for spin \(J \) resonance

\[
A(x; J) = A_0 \frac{\sqrt{xM\Gamma(x; J)}}{x^2 - M^2 + iM\Gamma(x; J)},
\]

\[
\Gamma(x; J) = \Gamma_0 \frac{M}{x} \left[\frac{x^2 - 4m^2_{\pi}}{M^2 - 4m^2_{\pi}} \right]^{2J+1/2}
\]
Results – mass fits

- $f_0(500)$, $\rho(770)$, $f_0(980)$ and $f_2(1270)$ resonances used in the fit
- Resonance yields extracted
Summary

- Exclusive dipion production at 5.02 and 13 TeV in CMS: http://cds.cern.ch/record/2679648
- Pions identified via their dE/dx
- Mass spectrum is described by four interfering Breit-Wigner resonances + continuum distribution
- Total and resonant cross sections measured
Thank you for your attention!