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Motivation

AXIAL ANOMALY OF QCD:

UA(1) anomaly: anomalous breaking of the UA(1) subgroup
of UL(Nf )× UR(Nf ) chiral symmetry
−→ vacuum-to-vacuum topological fluctuations (instantons)

∂µj
µa
A = − g2

16π2
εµνρσ Tr [T aFµνFρσ]

UA(1) breaking interactions depend on instanton density

−→ suppressed at high T 1 (valid beyond Tc)
−→ is the anomaly present at the phase transition?

Very little is known at finite baryochemical potential (µB)2

−→ sign problem in lattice simulations
−→ effective models have not been extensively explored

1R. D. Pisarski, and L. G. Yaffe, Phys. Lett. B97, 110 (1980).
2T. Schaefer, Phys. Rev. D57, 3950 (1998).
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Motivation

η′ - NUCLEON BOUND STATE:

Effective models at finite T and/or density:
−→ mean field calculations (NJL3, linear sigma models4)
aaaapredict a ∼150 MeV drop in mη′ at finite µB

Effective description of the mass drop:
−→ attractive potential in medium ⇒ η′N bound state
−→ Analogous to Λ(1405) ∼ K̄N bound state

Problem with mean field calculations: they treat model
parameters as environment independent constants
−→

”
A · v” type of terms decrease (A-constant, v -decreases)

−→ evolution of the
”
A” anomaly at finite T and µB?

What is the role of fluctuations?

3P. Costa, M. C. Ruivo & Yu. L. Kalinovsky, Phys. Lett. B 560, 171 (2003).
4S. Sakai & D. Jido, Phys. Rev. C88, 064906 (2013).
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Motivation

Fluctuation effects in a quantum system is encoded in the
effective action

Partition function and effective action in field theory:
[S: classical action, φ: dynamical variable, φ̄: mean field, J: source field]

Z [J] =

∫
Dφe−(S[φ]+

∫
Jφ), Γ[φ̄] = − logZ [J]−

∫
Jφ̄

Γ contains the truncated 1PI n-point functions

How to calculate the effective action? ⇒ perturbation theory!
−→ find a small parameter in S and Taylor expand
−→ fails in QCD & eff. models are not weakly coupled either

Non-perturbative methods are necessary:
Functional Renormalization Group (FRG)5

5C. Wetterich, Phys. Lett. B301, 90 (1993)
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Functional Renormalization Group

FRG generalizes the idea of the Wilsonian RG: fluctuations are
taken into account at the level of the quantum effective action
Introduce a flow parameter k and include
fluctuations for which q & k

aa Zk [J] =
∫
Dφe−(S[φ]+

∫
Jφ)

aaaaaaaa×e−
1
2

∫
φRkφ

−→ regulator: mom. dep. mass
aaaaterm suppressing low modes
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Scale dependent effective potential and its flow equation:

Γk [φ̄] = − logZk [J]−
∫

Jφ̄− 1

2

∫
φ̄Rk φ̄

∂kΓk =
1

2

∫ (T )

q,p
Tr
[
∂kRk(q, p)(Γ

(2)
k + Rk)−1(p, q)

]
=

1

2
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Functional Renormalization Group

The scale dependent effective action (Γk) is an average action
−→ fluctuations with wavelenghts λ ∼ k−1 are integrated out

−→ k →∞: no fluctuations ⇒ Γk→∞[φ̄] = S[φ̄]

−→ k = 0: all fluctuations ⇒ Γk=0[φ̄] = Γ[φ̄]

The scale-dependent effective
action interpolates between
classical- and quantum
effective actions

The trajectory depends on Rk

but the endpoint does not

Choice of Rk ↔ choice of scheme
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Chiral effective nucleon-meson theory at finite µB

3 FLAVOR CHIRAL NUCLEON-MESON MODEL:

Effective model of chiral symmetry breaking: order par. M
[excitations of M: π,K , η, η′ and a0, κ, f0, σ]

LM = Tr [∂iM
†∂iM]− Tr [H(M† + M)]

+ Vch(M) + A · (detM† + detM)

Lω+N =
1

4
(∂iωj − ∂jωi )

2 +
1

2
mωω

2
i + N̄(∂/− µBγ0)N,

LYuk = N̄(gY M̃5 − igωω/)N

−→ nucleon mass: entirely from Yukawa coupling

Fluctuation effects are calculated in the mesonic potentials:

Vk = Vch,k(M) + Ak(M) · (detM† + detM)

−→ solve a set of functional differential equations on a grid
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Chiral effective nucleon-meson theory at finite µB

Baryon Silver Blaze property:
−→ no change in the effective action for T = 0 if
aaaaµB < mN − B ≡ µB,c

At µB = µB,c :6

−→ 1st order phase transition from nuclear gas to liquid

−→ nuclear density jumps from zero to n0 ≈ 0.17 fm−3

−→ non-strange chiral condensate jumps from fπ to vns,nucl
aaaa(Landau mass ML ≈ 0.8mN ⇒ vns,nucl ≈ 69.5MeV )

The first order transition is related to the condensation of the
timelike component of the ω vector particle

ω couples to vns that couples to vs
−→ jump in all order parameters

6M. Drews and W. Weise, Prog. Part. Nucl. Phys. 93, 69 (2017).
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Gergely Fejős Axial anomaly and hadronic properties in a nuclear medium



Chiral effective nucleon-meson theory at finite µB

Baryon Silver Blaze property:
−→ no change in the effective action for T = 0 if
aaaaµB < mN − B ≡ µB,c

At µB = µB,c :6

−→ 1st order phase transition from nuclear gas to liquid

−→ nuclear density jumps from zero to n0 ≈ 0.17 fm−3

−→ non-strange chiral condensate jumps from fπ to vns,nucl
aaaa(Landau mass ML ≈ 0.8mN ⇒ vns,nucl ≈ 69.5MeV )

The first order transition is related to the condensation of the
timelike component of the ω vector particle

ω couples to vns that couples to vs
−→ jump in all order parameters

6M. Drews and W. Weise, Prog. Part. Nucl. Phys. 93, 69 (2017).
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Chiral effective nucleon-meson theory at finite µB

PARAMETRIZATION:

The model consists of the following parameters:

→ V (M) : m2, g1, g2, bi (i = 1..4) [bi are non-renormalizable
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa interactions!]
→ explicit breaking, anomaly: h0, h8,A
→ ω + N: g2

ω/m
2
ω, gY

12 parameters in total. Input:
→ masses in the vacuum: mπ, mK , mη, mη′ , ma0 , mN

→ normal nuclear density: n0

→ critical chemical potential: µB,c
→ nucleon mass drop in the medium: ∆mN

→ 2 PCAC relations (decay constants fπ, fK )
→ temperature of the critical endpoint TCEP

[Compression modulus: prediction! K = 9n0
∂n0/∂µB

≈ 287MeV ]
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Numerical results
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Numerical results
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Numerical results
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Numerical results
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Numerical results
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Numerical results

→ I1 = (v2
ns + v2

s )/2
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Numerical results
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Numerical results

Conventional wisdom is that the axial anomaly should
decrease as the chiral condensate drops
−→ How can we obtain the opposite effect?

Earlier perturbative calculations are based on a high-T
expansion and take into account instanton effects
−→ these calculations are valid way above Tc and definitely
aaaanot for T . Tc

Current effect: mesonic quantum fluctuations, not instanton
contributions
−→ backreaction of the anomaly on itself
−→ mean field theory is questionable

Even the bare anomaly coefficient A can depend explicitly on
T and µB !
−→ competition between instantons and mesonic loop effects
−→ extension: assume a form of A = A(T , µB)
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Summary

Mesonic and nucleon fluctuations effects on chiral symmetry,
axial anomaly and mesonic spectrum in a nuclear medium
using the Functional Renormalization Group (FRG) approach

Findings:

−→ mesonic fluctuations make the anomaly coefficient
aaaacondensate dependent

−→ (partial) restoration of chiral symmetry seem to
aaaaincrease the anomaly (∆|A| & 15% relative difference)

−→ nuclear transition: ∼ 20% drop in (n.s.) chiral cond.

−→ η′ mass is smooth at the transition point
aaa ⇒ η′N bound state?

Important:
−→ no instanton effects have been included!
−→ environment dependence of the bare anomaly coefficient
aaaacould be relevant!
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