Axial anomaly and hadronic properties in a nuclear medium

Gergely Fejős

Eötvös Loránd University Faculty of Science Department of Atomic Physics

Zimányi Winter School 2019

6th December, 2019

GF & A. Hosaka, Phys. Rev. D **95**, 116011 (2017)

GF & A. Hosaka, Phys. Rev. D 98, 036009 (2018)

AXIAL ANOMALY OF QCD:

- $U_A(1)$ anomaly: anomalous breaking of the $U_A(1)$ subgroup of $U_L(N_f) \times U_R(N_f)$ chiral symmetry
 - → vacuum-to-vacuum topological fluctuations (instantons)

$$\partial_{\mu}j_{A}^{\mu a} = -\frac{g^{2}}{16\pi^{2}}\epsilon^{\mu\nu\rho\sigma}\operatorname{Tr}\left[T^{a}F_{\mu\nu}F_{\rho\sigma}\right]$$

- ullet $U_A(1)$ breaking interactions depend on instanton density
 - \longrightarrow suppressed at high T^1 (valid beyond T_c)
 - → is the anomaly present at the phase transition?
- ullet Very little is known at finite baryochemical potential $(\mu_B)^2$
 - → sign problem in lattice simulations
 - ---- effective models have not been extensively explored

¹R. D. Pisarski, and L. G. Yaffe, Phys. Lett. B**97**, 110 (1980).

η' - NUCLEON BOUND STATE:

- Effective models at finite T and/or density:
 - \longrightarrow mean field calculations (NJL³, linear sigma models⁴) predict a \sim 150 MeV drop in $m_{\eta'}$ at finite μ_B
- Effective description of the mass drop:
 - \longrightarrow attractive potential in medium $\Rightarrow \eta' N$ bound state
 - \longrightarrow Analogous to $\Lambda(1405) \sim \bar{K}N$ bound state

³P. Costa, M. C. Ruivo & Yu. L. Kalinovsky, Phys. Lett. B 560, 171 (2003).

η' - NUCLEON BOUND STATE:

- Effective models at finite T and/or density:
 - \longrightarrow mean field calculations (NJL³, linear sigma models⁴) predict a ~ 150 MeV drop in $m_{n'}$ at finite μ_B
- Effective description of the mass drop:
 - \longrightarrow attractive potential in medium $\Rightarrow \eta' N$ bound state
 - \longrightarrow Analogous to $\Lambda(1405) \sim \bar{K}N$ bound state
- Problem with mean field calculations: they treat model parameters as environment independent constants
 - \longrightarrow " $A \cdot v$ " type of terms decrease (A-constant, v-decreases)
 - \longrightarrow evolution of the "A" anomaly at finite T and μ_B ?
- What is the role of fluctuations?

³P. Costa, M. C. Ruivo & Yu. L. Kalinovsky, Phys. Lett. B 560, 171 (2003).

⁴S. Sakai & D. Jido, Phys. Rev. C**88**, 064906 (2013). ← → ← 差 → ← 差 → ≥ → へ ←

- Fluctuation effects in a quantum system is encoded in the effective action
- Partition function and effective action in field theory: [S: classical action, ϕ : dynamical variable, $\bar{\phi}$: mean field, J: source field]

$$Z[J] = \int \mathcal{D}\phi e^{-(S[\phi] + \int J\phi)}, \quad \Gamma[\bar{\phi}] = -\log Z[J] - \int J\bar{\phi}$$

- Γ contains the truncated 1PI *n*-point functions
- How to calculate the effective action? ⇒ perturbation theory!
 - \longrightarrow find a small parameter in ${\mathcal S}$ and Taylor expand
 - \longrightarrow fails in QCD & eff. models are not weakly coupled either
- Non-perturbative methods are necessary:
 Functional Renormalization Group (FRG)⁵

⁵C. Wetterich, Phys. Lett. B**301**, 90 (1993)

Functional Renormalization Group

- FRG generalizes the idea of the Wilsonian RG: fluctuations are taken into account at the level of the quantum effective action
- Introduce a flow parameter k and include fluctuations for which $q \ge k$

$$Z_{k}[J] = \int \mathcal{D}\phi e^{-(\mathcal{S}[\phi] + \int J\phi)}$$
$$\times e^{-\frac{1}{2} \int \phi R_{k} \phi}$$

regulator: mom. dep. mass term suppressing low modes

Functional Renormalization Group

- FRG generalizes the idea of the Wilsonian RG: fluctuations are taken into account at the level of the quantum effective action
- Introduce a flow parameter k and include fluctuations for which $q \ge k$

$$Z_{k}[J] = \int \mathcal{D}\phi e^{-(\mathcal{S}[\phi] + \int J\phi)} \times e^{-\frac{1}{2} \int \phi R_{k} \phi}$$

regulator: mom. dep. mass term suppressing low modes

Scale dependent effective potential and its flow equation:

Functional Renormalization Group

- The scale dependent effective action (Γ_k) is an average action \longrightarrow fluctuations with wavelenghts $\lambda \sim k^{-1}$ are integrated out
 - $\longrightarrow k \to \infty$: no fluctuations \Rightarrow $\Gamma_{k \to \infty}[\bar{\phi}] = \mathcal{S}[\bar{\phi}]$
 - $\longrightarrow k = 0$: all fluctuations $\Rightarrow \Gamma_{k=0}[\bar{\phi}] = \Gamma[\bar{\phi}]$
- The scale-dependent effective action interpolates between classical- and quantum effective actions
- The trajectory depends on R_k but the endpoint does not
- Choice of $R_k \leftrightarrow$ choice of scheme

3 FLAVOR CHIRAL NUCLEON-MESON MODEL:

• Effective model of chiral symmetry breaking: order par. M [excitations of M: π, K, η, η' and a_0, κ, f_0, σ]

$$\mathcal{L}_{M} = \operatorname{Tr} \left[\partial_{i} M^{\dagger} \partial_{i} M \right] - \operatorname{Tr} \left[H(M^{\dagger} + M) \right]$$

$$+ V_{ch}(M) + A \cdot \left(\det M^{\dagger} + \det M \right)$$

$$\mathcal{L}_{\omega+N} = \frac{1}{4} (\partial_{i} \omega_{j} - \partial_{j} \omega_{i})^{2} + \frac{1}{2} m_{\omega} \omega_{i}^{2} + \bar{N} (\partial - \mu_{B} \gamma_{0}) N,$$

$$\mathcal{L}_{Yuk} = \bar{N} (g_{Y} \tilde{M}_{5} - i g_{\omega} \psi) N$$

- --- nucleon mass: entirely from Yukawa coupling
- Fluctuation effects are calculated in the mesonic potentials:

$$V_k = V_{ch,k}(M) + A_k(M) \cdot (\det M^{\dagger} + \det M)$$

 \longrightarrow solve a set of functional differential equations on a grid

- Baryon Silver Blaze property:
 - \longrightarrow no change in the effective action for T=0 if $\mu_B < m_N B \equiv \mu_{B,c}$

⁶M. Drews and W. Weise, Prog. Part. Nucl. Phys. 93, 69 (2017). ♠ ♦ ♦ ♦ ♦ ♦

- Baryon Silver Blaze property:
 - \longrightarrow no change in the effective action for T=0 if $\mu_B < m_N B \equiv \mu_{B,c}$
- At $\mu_B = \mu_{B,c}$:6
 - → 1st order phase transition from nuclear gas to liquid
 - \longrightarrow nuclear density jumps from zero to $n_0 \approx 0.17 \, \mathrm{fm}^{-3}$
 - \longrightarrow non-strange chiral condensate jumps from f_π to $v_{ns,nucl}$ (Landau mass $M_L \approx 0.8 m_N \Rightarrow v_{ns,nucl} \approx 69.5 \, {\rm MeV}$)

⁶M. Drews and W. Weise, Prog. Part. Nucl. Phys. 93, 69 (2017). → ★ ◆ ◆ ◆ ◆

- Baryon Silver Blaze property:
 - \longrightarrow no change in the effective action for T=0 if $\mu_B < m_N B \equiv \mu_{B,c}$
- At $\mu_B = \mu_{B,c}$:6
 - → 1st order phase transition from nuclear gas to liquid
 - \longrightarrow nuclear density jumps from zero to $n_0 \approx 0.17 \, \mathrm{fm}^{-3}$
 - \longrightarrow non-strange chiral condensate jumps from f_{π} to $v_{ns,nucl}$ (Landau mass $M_L \approx 0.8 m_N \Rightarrow v_{ns,nucl} \approx 69.5 \, {\rm MeV}$)
- ullet The first order transition is related to the condensation of the timelike component of the ω vector particle
- ullet ω couples to v_{ns} that couples to v_s
 - → jump in all order parameters

⁶M. Drews and W. Weise, Prog. Part. Nucl. Phys. 93, 69 (2017). → ■ ✓ ٩.0

PARAMETRIZATION:

• The model consists of the following parameters:

```
\rightarrow V(M): m^2, g_1, g_2, b_i (i = 1..4) [b_i are non-renormalizable interactions!]
```

- \rightarrow explicit breaking, anomaly: h_0, h_8, A
- $ightarrow \omega + N$: $g_{\omega}^2/m_{\omega}^2, g_{Y}$
- 12 parameters in total. Input:
 - \rightarrow masses in the vacuum: m_{π} , m_{K} , m_{η} , $m_{\eta'}$, m_{a_0} , m_{N}
 - \rightarrow normal nuclear density: n_0
 - ightarrow critical chemical potential: $\mu_{B,c}$
 - \rightarrow nucleon mass drop in the medium: Δm_N
 - \rightarrow 2 PCAC relations (decay constants f_{π} , f_{K})
 - \rightarrow temperature of the critical endpoint T_{CEP}

[Compression modulus: prediction! $K = \frac{9n_0}{\partial n_0/\partial \mu_B} \approx 287 \, \mathrm{MeV}$]

- Conventional wisdom is that the axial anomaly should decrease as the chiral condensate drops
 - → How can we obtain the opposite effect?
- Earlier perturbative calculations are based on a high-T expansion and take into account instanton effects
 - \longrightarrow these calculations are valid way above \mathcal{T}_c and definitely not for $\mathcal{T}\lesssim \mathcal{T}_c$

- Conventional wisdom is that the axial anomaly should decrease as the chiral condensate drops
 - → How can we obtain the opposite effect?
- Earlier perturbative calculations are based on a high-T expansion and take into account instanton effects
 - \longrightarrow these calculations are valid way above T_c and definitely not for $T\lesssim T_c$
- Current effect: mesonic quantum fluctuations, <u>not</u> instanton contributions
 - → backreaction of the anomaly on itself
 - → mean field theory is questionable

- Conventional wisdom is that the axial anomaly should decrease as the chiral condensate drops
 - → How can we obtain the opposite effect?
- Earlier perturbative calculations are based on a high-T expansion and take into account instanton effects
 - \longrightarrow these calculations are valid way above T_c and definitely not for $T\lesssim T_c$
- Current effect: mesonic quantum fluctuations, <u>not</u> instanton contributions
 - ---- backreaction of the anomaly on itself
 - → mean field theory is questionable
- Even the bare anomaly coefficient A can depend explicitly on T and $\mu_B!$
 - ---- competition between instantons and mesonic loop effects
 - \longrightarrow extension: assume a form of $A = A(T, \mu_B)$

Summary

 Mesonic and nucleon fluctuations effects on chiral symmetry, axial anomaly and mesonic spectrum in a nuclear medium using the Functional Renormalization Group (FRG) approach

Summary

- Mesonic and nucleon fluctuations effects on chiral symmetry, axial anomaly and mesonic spectrum in a nuclear medium using the Functional Renormalization Group (FRG) approach
- Findings:
 - mesonic fluctuations make the anomaly coefficient condensate dependent
 - \longrightarrow (partial) restoration of chiral symmetry seem to increase the anomaly ($\Delta |A| \gtrsim 15\%$ relative difference)
 - \longrightarrow nuclear transition: $\sim 20\%$ drop in (n.s.) chiral cond.
 - $\longrightarrow \eta'$ mass is smooth at the transition point $\Rightarrow \eta' N$ bound state?

Summary

- Mesonic and nucleon fluctuations effects on chiral symmetry, axial anomaly and mesonic spectrum in a nuclear medium using the Functional Renormalization Group (FRG) approach
- Findings:
 - mesonic fluctuations make the anomaly coefficient condensate dependent
 - \longrightarrow (partial) restoration of chiral symmetry seem to increase the anomaly ($\Delta |A| \gtrsim 15\%$ relative difference)
 - \longrightarrow nuclear transition: $\sim 20\%$ drop in (n.s.) chiral cond.
 - $\longrightarrow \eta'$ mass is smooth at the transition point $\Rightarrow \eta' N$ bound state?
- Important:
 - → no instanton effects have been included!
 - environment dependence of the bare anomaly coefficient could be relevant!