Injectors: MD beams in Run3 and planning

H. Bartosik, V. Kain, B. Mikulec, G. Rumolo Using input from LIU workshop (Montreux 2020)

LHC MD day 2020

- Introduction to LIU upgrades and expected injectors performance
- Beam commissioning in 2021 and performance ramp-up in Run 3
- Feed-back on LHC MDs in 2018 and proposals for improvements
- Summary and conclusions

- Introduction to LIU upgrades and expected injectors performance
- Beam commissioning in 2021 and performance ramp-up in Run 3
- Feed-back on LHC MDs in 2018 and proposals for improvements
- Summary and conclusions

Overview of new systems and injector upgrades during LS2

o PSB

- Connection to Linac4 → New H⁻ charge exchange injection at 160 MeV from Linac4 to double brightness of LHC beams
- Acceleration to 2 GeV with new main power supply POPS-B and replacement of C02-C04-C16 RF systems by Finemet based RF system

o PS

- New injection at 2 GeV for protons to mitigate space charge
- RF improvements (impedance reduction and new longitudinal feedback) to improve beam quality and increase longitudinal coupled bunch instability threshold
- Operational deployment of transverse feedback system

SPS

200 MHz RF system upgrade (rearrangement of cavities, power upgrade, new LLRF)

LHC Injectors Upgrade

- Electron cloud mitigation and impedance reduction to increase intensity reach
- New beam dump system in LSS5 and new design of protection devices to comply with the target HL-LHC beam parameter values

Expected performance limits after LIU upgrades

- Connection of Linac4 and PSB H- injection at 160 MeV to allow for higher brightness
- PSB-to-PS transfer at 2 GeV instead of 1.4 GeV to allow for higher brightness
- PS RF upgrades to reduce impedance and cure coupled bunch instabilities with feedback (Finemet cavity)
- SPS RF upgrades to increase RF power including impedance reduction and new LLRF + new beam dump and protection devices to cope with higher brightness

- Introduction to LIU upgrades and expected injectors performance
- Beam commissioning in 2021 and performance ramp-up in Run 3
- Feed-back on LHC MDs in 2018 and proposals for improvements
- Summary and conclusions

Projected performance ramp-up during Run 3

- 2021 will be devoted to recover the pre-LS2 performance with the new LIU equipment + commissioning of slip stacking with ions in SPS
- 2022-2024 will be devoted to gradual beam performance ramp-up
 - LIU proton intensity should be already available from the PSB/PS
 - Intensity ramp-up in SPS
 - Brightness ramp-up in the PSB and PS
- Critical beam dynamics challenges to be addressed
 - Emittance preservation at PSB-to-PS transfer and along the chain
 - Losses at PS-to-SPS transfer and at SPS start of ramp
 - SPS longitudinal stability throughout the cycle
 - SPS transverse stability at injection up to LIU intensities
 - Beam degradation from electron cloud in SPS

Performance ramp-up: standard beam at LHC injection

Performance ramp-up: BCMS beam at LHC injection

- Introduction to LIU upgrades and expected injectors performance
- Beam commissioning in 2021 and performance ramp-up in Run 3
- Feed-back on LHC MDs in 2018 and proposals for improvements
- Summary and conclusions

Injectors experience with LHC MDs in 2018 (and before)

LHC MD period is stressful for the injectors

Usually many non-operational beams to be prepared (lots of additional work)

Beam requests not always fully clear

- In some cases the beam requirements had to be reconstructed by the MD coordination team together with injectors team
- Injectors need all beam parameters for preparation (intensity, emittances, number of bunches, batch spacing, bunch length, ...)
- Also the injectors LSA cycles need to be defined (up to now done by injectors)
- In addition: last minute changes, sometimes even on the day of the MD ...

Distribution of information could be improved

- In addition to the MD schedule in ASM, beam preparation was done based on EXCEL sheets – not clear when changes have been made and therefore sometimes different versions used for beam preparation
- Clearly there is room for improvement of the efficiency of LHC MDs

Proposals to improve LHC MD beam preparation in Run 3

All information should be centralized in MD tool

- including detailed beam description, LSA cycles in injectors, ...
- as was the original idea of the MD tool!

Prepare option in MD tool for MD users to select pre-defined beams

- LHC pilot
- LHC indiv (single bunch, operational characteristics)
- LHC 25 ns beam (operational characteristics)

For MDs that require characteristics other than pre-defined beams

- Should organize a meeting with concerned MD users, MD coordinators and 1 representative per machine at latest 2 weeks before MD block
- All necessary beam information (including LSA cycles) to be defined together and inserted into MD tool (after feasibility is clarified)
- Indicate also which beam parameters are critical for each MD and which are less critical (maybe through separate option in MD tool?)
- Beam requests need to be finalized 2 weeks before LHC MD block

- Introduction to LIU upgrades and expected injectors performance
- Beam commissioning in 2021 and performance ramp-up in Run 3
- Feed-back on LHC MDs in 2018 and proposals for improvements
- Summary and conclusions

Summary

- 2021 will be devoted to recovery pre-LS2 beam performance with new hardware and LIU upgrades
- 2022-2024 it is planned to ramp up the performance with focus on standard and BCMS beams:

Year	Intensity	Emittance standard	Emittance BCMS
2021	1.3e11 p/b	2.50 um	1.30 um
2022	1.3e11 → 1.8e11 p/b	2.50 um	1.30 um
2023	1.8e11 → 2.1e11 p/b	2.50 → 2.30 um	1.30 → 1.55 um
2024	2.1e11 → 2.3e11 p/b	2.30 → 2.10 um	1.55 → 1.7 um

 Provided proposals on how to improve the LHC MD beam preparation in Run 3

Thank you for your attention

