Silicon Detector Simulation

KOALICE Workshop, January 5th 2020 Jeongsu Bok (Inha University)

Activity in 2019

- XicO analysis
 - Electron decay channel
 - p+p 13 TeV (Jinjoo)
 - p+Pb 5 TeV
- Hardware contribution
 - Assymbly at Busan
- Simulation on silicon detector
 - Silvaco TCAD
 - Garfield++ simulation

Silicon detector simulation

- TCAD (Technology computer-aided design)
 - modelling of process steps (such as diffusion and ion implantation)
 - modelling of the behavior of the electrical devices based on funda mental physics, such as the doping profiles of the devices
 - Silvaco is a physics-based simulator, which predicts electrical chara cteristics associated with specific physical structures and condition s
 - Extract Electric field (input of Garfield++ simulation)
- Garfield++ simulation
 - a toolkit for the detailed simulation of particle detectors that use g as and semi-conductors as sensitive medium.
 - up-to-date treatment of electron transport and the user interface, which is derived from ROOT
 - Extract signal, charge collection time, charge collection efficiency

Current Status and Goals

- Silvaco TCAD
 - Input : Doping concentration
 - Goals
 - calculate electric field
 - Compare electric field and resistivity with result using Synopsis(CERN)
- Garfield++ simulation
 - Compared charge collection time without weighting field
 - Goals
 - Compare simulation with data

Silvaco TCAD : an example

- Size(µm) :1.5×1.5×2.0
- Material
 - Silicon, Aluminum(Electrode
)
- Doping concentration
 - n-type : 5e19
 - p-type : 1e15
- V(anode)=2.0V

KOALICE workshop

.........

Silvaco TCAD : an example : SEU test

- SEU : a change of state caused by one single ionizing striking a sensitive node in a micro-electronic device
- Density : 1e18. Radius : $0.05 \mu m$
- Entry : 0.6, 0.0, 0.6. Exit : 1.4, 2.0, 1.4

KOALICE workshop

• X-Y plane (0.75)

• X-Z plane (0.75)

Test with ALPIDE design

- 27x50x27 um
- Anode : 6V
- Resistivity of Epitaxial layer = $1k\Omega$

Test with ALPIDE design

Doping concentration

Test with ALPIDE design

- Doping Concentration and Electric field
 - Electric field, Depletion edge and Junction
- Current status
 - Obtained Efield plot
 - Working on extracting value of Efield, Resistivity

Doping Concentration

E Field (V/cm)

5.37e+03 2.69e+03

Electric Field

Garfield++ simulation

- History
 - originally written in Fortran by Rob Veenhof for gas detectors
 - ported to C++ by Heinrich Schindler
 - extended also for silicon detectors (still being developed)
- particle tracking
 - import of electric and weighting fields/potentials (TCAD, Ansys, etc .)
 - single point like electron hole pairs are tracked through the sensor using drift velocity and diffusion
 - induced current/charge is collected along the path
- charge collection time
 - defined as the time from 20% to 95% of the total induced charge
 - only on a sensor level without electronics

ALPIDE status and future development

- ALPIDE process, dimensions, doping concentration
 - TowerJazz 180nm CMOS Imaging Process
 - 27x29μm pitch, 2μm n-well, 3μm spacing, 25μm epitaxial layer thickness
 - standard process with deep n/p-well with high resistive epitaxial layer
- switch to 65nm process node
 - smaller electronics in n/p-well free up space
 - shrinking the pixel pitch to 20µm, 15µm or even 10µm possible
 - shrinking the n-well for lower capacitance or more complex electronics within it
 - new combinations of n-well diameter and spacing possible
- no necessity of process modification for higher depletion
 - smaller pixel pitch or wider spacing could lead to stronger and more uniform de pletion
 - faster charge collection time and more radiation hardness

ALPIDE

Charge collection time

- Top : electron arrival tim e
- Bottom : cumulative
- Calculate 20%~95%
 - charge collection time
- 1000 electron located ra ndomly in a pixel

Charge collection time

- 1000 electrons distributed randomly in a cell where a pixel has 10x10x10 cell s
- Efield from Synopsis TCAD

22.8 24.2 21.1 21.5 16 17.5 19.6 19.5 24.1 25

25.2 23.2 22 22 4 18.7 19.4 20.6 24.6 23.1 24.5

23.2 24.3 23.2 25.2 22.6 21.2 21 23.8 25.9 23.2

25 23.8 25.1 22.4 23.3 22.6 25.1 24.8 24.2 24

2 3 4 5 6 5

1/5/20

• Deep region shows slower charge collection time

23.7 25.2 22.8 19 15.9 18.8 17.4 21.5 25.6 23

24.6 23.2 26 23.5 21.5 21 21.5 23 23.8 24.5

25 4 26 2 24 5 22 1 21 24 1 24 6 23 6 25 6 24

24.9 24.4 25.2 22.4 24.5 22.7 23.8 23.1 24.7 25.

2 3 4 5 6 7 8 9

• 27μm pitch - n-well 2μm, spacing 3μm, 6V back bias

CCT n-well test 27µm pitch - n-well 0.5µm, spacing 3.75µm, 6V back bias

• Smaller n-well size

1/5/20

KOALICE workshop

CCT n-well test 15µm pitch - n-well 2µm, spacing 3µm, 6V back bias

1/5/20

• smaller pixel size

Comparing two methods

Without weighting field

- Two methods are consistent
- The Shockley–Ramo theorem allows one to easily calculate the instantaneous electri c current induced by a charge moving in the vicinity of an electrode
- $i = E_v qv$
 - q: charge v:velocity
 - E_v is the component of the electric field in the direction of v at the charge's instantaneou s position, under the following conditions: charge removed, given electrode raised to uni t potential, and all other conductors grounded.
- 1/5/20

Current status and plan

- Silivaco TCAD
 - Following current simulation with ALPIDE design
 - doping concentration looks reasonable
 - Obtained electric field plot
 - Plan
 - Extract the values
 - Compare resistivity
 - Once they turned out to be reasonable results, we can apply other geometr y.
- Garfield++
 - two methods are consistent in terms of charge collection time
 - a reference to compare during development of simulation
 - Plan
 - Matching the simulation to the experimental results and once it works, perf orm studies on future geometries.

감사합니다

Backup : Activity in analysis : Xic0 in p+Pb

- Heavy quarks are
 - sensitive probes to study the Quark-Gluon Plasma in heavy-ion coll isions.
 - Due to their large masses, they are formed in initial hard scattering of parton before the timescale of QGP formation
 - \rightarrow produced early in the collision, live long enough to sample QGP
 - experience the whole system evolution
- Baryon containing Heavy Quark
 - Charm-baryon measurements provide unique insight into hadroniz ation processes
 - Baryon-to-Meson ratio is expected to be higher in p+Pb and Pb+Pb
- Charmed baryon-to-meson ratio in p+p and p+Pb higher tha n than model calculations

$\Xi_{\rm c}^{0}$ / D⁰

Phys. Lett. B. 781 (2018) 8-19

Theories underestimate it

1/5/20

Studying Ξ_c^0 using semi-leptonic decay

- Analysis procedure
 - Reconstruct *Ξ*-
 - Reconstruct electron
 - Subtract WS background
 - Unfold Ξ_c^0 pT spectra
- Dataset
 - p+Pb 5.02 TeV
 - Using LHC16q (32 runs) (LHC16t 4 runs)
 - MC : LHC17d2b_fast_new

1/5/20

KOALICE workshop

Hadronic decay channel: $\Xi_c^0 \rightarrow \pi + \Xi - \rightarrow \pi + \pi - \Lambda \rightarrow \pi + \pi - p \pi$ -

Backup : p+Pb plots

• *E*- Mass

• Mass of Electron Pair

Backup : p+Pb plots

• Nsigma (TOF), nsigma (TPC) p+Pb 5 TeV

• p+p 13 TeV LHC16l

Weighting Field

- Ramo's theorem predicts the result of electrostatic inductio n produced by the moving charge in an arbitrary system of c onductive electrodes placed in a non-conductive medium.
- The charge q₀ generated by incident particles and drifting in the medium induces the current i_i(t) on any electrode as

 $\mathbf{i}_i(t) = q_0 \vec{v}_{\mathrm{dr}}(t) \vec{E}_i^*(t)$

- where v_{dr} is the drift velocity and E_i^* the weighting electric field, Δ Q the change of the charge Q induced on the readout electrode, a nd $\Delta \phi^*$ the change of the weighting potential ϕ^*
- The weighting field is defined in the Ramo's theorem as the electric field created by the unit potential (V * = 1) applied to the readout electrode while all the other electrodes of the device remain grounded (V * = 0)