Status of Ξ_c^+ Hadronic Channel topological study

koAlice 2020. 1.5 Jaehyeon Do

Charmed baryon

- Fragmentation in to charm baryons are well studied in e+e collisions
 - Fragmentation would same in pp (or pPb, PbPb) system?
 - Multiple parton interaction (MPI) and color reconnection (CR) could increase the baryon to meson ratio
 - Recent analysis reported charm baryon enhancement from model prediction, even with CR

Charmed baryon

- pPb, PbPb collisions are further affected by cold nuclear matter effect and final state effect
 - pp charmed baryon measurement would be reference of bigger system (pPb, PbPb)
 - Strangeness enhancement?
 - Recombination could enhance charmed baryon yield?

Ξ_{c}^{+} (csu, 2467MeV) Decay Modes

$\Sigma(1385)^+ K^- \pi^+$	[<i>b</i> , <i>g</i>] <0.3	90%	678
$\Sigma^+ K^- \pi^+$	$[g]$ 0.94 ± 0.11		811
$\Sigma^+\overline{K}^*(892)^0$	$[b,g]$ 0.81 \pm 0.15		658
$\Sigma^0 K^- \pi^+ \pi^+$	$[g]$ 0.29 ± 0.16		735
$\Xi^0 \pi^+$	$[g]$ 0.55 ± 0.16		877
$\Xi^{-}\pi^{+}\pi^{+}$	[g] DEFINED AS 1		851
$\Xi(1530)^{0}\pi^{+}$	[b,g] < 0.1	90%	750
$\Xi^0 \pi^+ \pi^0$	$[g]$ 2.34 ± 0.68		856
$=0_{\pi}+\pi+\pi^{-}$			010
	[g] 1.74 ±0.50		818
$\overline{\Xi}^0 e^+ \nu_e$	$[g] 1.74 \pm 0.50 [g] 2.3 +0.7 -0.9$		818 884

Cabibbo-suppressed decays

$pK^{-}\pi^{+}$	[g]	0.21	± 0.03		944
р К *(892) ⁰	[b,g]	0.12	± 0.02		828
$\Sigma^+ K^+ K^-$	[g]	0.15	± 0.07		580
$\Sigma^+ \phi$	[b,g] -	<0.11		90%	549
$arepsilon(1690)^0 {\it K}^+$, $arepsilon(1690)^0 ightarrow$	[g] -	<0.05		90%	501
$\Sigma^+ K^-$					

Motivation

- Ξ⁻, π⁺, π⁺ vs K⁻, π⁺, P
- Pros :
 - Larger branching ratio (x5)
 - Resonance channel provide further constraints on signal selection (Mass window cut)
- Cons :

- Has more 5 daughter particles (Harder to reconstruct, introduce little more combinatorics)

Data Analysis

- DataSet : LHC16l (pp 13TeV)
- DataSet : LHC19g6a2, LHC19g6b2, LHC19g6c2 (pp 13TeV, MC)
 - 3M events were selected
 - Ξ_c^+ , Ξ_c^0 emebedded (Heavy flavor enhanced event)
 - Interested physics Ξ_c^+ decayed into $\Xi^- + \pi^+ + \pi^+$

-
$$\Xi_c^+ \rightarrow \Xi^- + \pi^+ + \pi^+ (\sim 90\%)$$

- $\quad \Xi_{c}^{+} \rightarrow \Xi^{*} + \pi^{+} \rightarrow \Xi^{-} + \pi^{+} + \pi^{+} (\sim 10\%)$
- Loose trackcut applied
 - Mass window cut on cascade (12MeV)
 - 4 sigma TPC PID cut for Pions
 - 500µm PiPi DCAcut
 - Minimum Ncluster_TPC (80)
 - Minimum Ncluster_ITS (3)
- Ξ_{c}^{+} Signals are tagged by truth information

Ξ_{c}^{+} Generated Spectrum

Ξ_{c}^{+} Reconstructed Mass (Pt : 1-5GeV)

Ξ_{c}^{+} Reconstructed Mass (Pt : 1-5GeV)

Secondary Vertex

- AliVertexerTracks is used for searching vertex
 - Algorithm : 1 (Default)
 - Tracks are approximated as straight line
- Cascade has much worse vertex resolution
 - Not causing too much problem
 since AliVertexer take into account
 track resolution

Two Track Vertex Residual (Pt : 1-5GeV)

Three Track Vertex Residual(Pt : 1-5GeV)

Secondary Vertex Pion DCA(Pt : 1-5GeV)

Decay Length(Pt : 1-5GeV)

Cosine Pointing Angle at 2 Track Vertex

Cosine Pointing Angle at 3 Track Vertex

koAlice_2020

Resonance channel decay

- Ξ (1530) Can be reconstructed by paring π^+ and Ξ^- , we can apply additional mass cut (12MeV for now)
 - Expected further enhancement on S/B ratio
- Data has about 10% Resonance channel compared to total Ξ⁻, π⁺, π⁺ decay mode

TMVA (Toolkit for Multivariate Data Analysis)

- Root Implemented multi variable analysis tool (TMVA) which provide wide range of choice for optimizing cut
 - Rectangular cut optimization
 - Likely hood estimation
 - Bagged/Boosted Decision Tree
 - Artificial neural network
 - Support Vector machine
 -
- User Manual

https://root.cern.ch/download/doc/tmva/TMVAUsersGuide.pdf

• Jamie's talk & Tutorial

https://n-

ext.inha.ac.kr/event/320/contributions/1780/attachments/1051/1134/Presentation .pdf

https://cernbox.cern.ch/index.php/s/RvIESWYQF1u5zNI

TMVA (Toolkit for Multivariate Data Analysis)

Boosted Decision Tree (BDT)

- Decision Tree is method that applying sequential cuts to classify objects (like tracks)
- Each 'decision' (or cut) called node and at the end of nodes decision tree gives prediction called leaf
- Goal of training decision tree is optimize node(or cut) and prediction, try to minimize error (usually call loss)

Loss function : Gini Impurity

- Gini Impurity is one of most popular loss function for decision tree training (For finite class)
- Gini impurity shows how classified group mixed

$$\sum_{j=1}^J p_j (1-p_j)$$

 If classifier did perfect job, each sub-group contains same class (Signal or Background) make Impurity 0

Loss Function : Other option

- Decision Tree trained by greed searching
 - Trying to find variable and cut value that gives best result of classification (Minimum loss)
 - Repeat same procedure on the sub-group until hit limitation
 : Max_depth, Minimum number of sample event, No gain on loss
- Other loss function is also considerable in TMVA
 - Cross Entropy : $-\sum_{i=1}^J p_i \log_2 p_i$
 - Least square sum : Usually use when leaf has continuous value

What is Boosting?

- Boosting is making ensemble of weak Decision Trees rather than single strong tree, which makes prediction more stable and general
- Making final prediction by summing each weak prediction with weight, each weight decided to minimize loss of final prediction

$$f(\mathbf{x}) = \sum_{t=1}^{T} \overset{\text{Weight}}{\overset{\checkmark}{\alpha_t}} h_t(\mathbf{x})$$
Strong classifier Weak classifier

 Bagging making tree ensemble at same time by using fraction of dataset

Adaptive Boost (Ada Boost)

- One of common pick of Boosting method is adaptive boost
 - Each train step generate weak classifier (Decision tree) and modify weight of data (Each track in our case)
 - Weight of track increases when previous classifier failed to predict on that track
 - Repeat same procedure and generate different classifier
 - Make linear sum of prediction so we can get final answer

Next Step

- Code is still developing
 - Resonance $\Xi(1530)$ reconstruction optimization
 - Tree output for BDT training
 - Add updating primary vertex
- Performance test for ITS upgrade