

Activity Summary 2019

KoALICE National Workshop, 05JAN2020, High1 Resort (ROK) MINJAE ISAAC KWON, Pusan National University, Republic of Korea

What was in 2019?

HIC Production

(2018) — 04 JUN 2019

- HIC Production was finished.
 - ALL WORK FOR ITS² AT PUSAN WAS DONE
- (Almost all) well produced HICs were delivered to stave production site
- 236 were assembled, 197 were gone to stave.
- Overall production quality: 87.67%

	Assembled	Qualified (Endurance)		Delivered	
	236	OK	199	Amsterdam	10
Numbers				Berkeley	91
				Daresbury	21
		NOK	37	Frascati	55
				Torino	20
				Total	197
	1			2 NOBBs ar	e not shipped

CERN Summer Student Programme 2019

01JUL2019 — 23AUG2019

Lecture + Workshops + Project + Alcohol

Summer Student Report

https://cds.cern.ch/record/2687398

You can find all of Summer Student Reports in CDS (https://cds.cern.ch/) with keyword :

CERN-STUDENTS-Note-2019

3 Body Collision, Particle Scattering Simulation: Motivation

- MORE DENSITY: Trillision Experiment (3-body colliding)
- There's no simulator
 - -3 body problem...
 - GEANT4?
 - Not for particle-particle interaction...
- Cannot do analytic calculation (3-body problem)
 - Should make simulator (Numerical)

QCD Phase Diagram

ALITE in RUN4

KoALICE2030

- ALI Target Experiment
 - A short period of Target (Test) Experiment (in RUN5-6 with ALICEs)
 - Higher Interaction rate at (little) lower √s_{NN}
 - Closer IP
 - Trillision (3 nuclei collision) event?
- Silicon R&D + Production for ALICEs in RUN5-6
 - ITS3 + 7 tracking barrel layers +
 - (Active Target Experiment at SPS)
- Exploring QCD diagram with Charm

3 Body Collision: In-Elastic Collisions

Event Candidates of Inelastic Collisions (n=3)

T: Target

P: Projectile

Particle Scattering Simulation: Simulator

- Simulation Framework : RooParticle
 - https://github.com/isaac-kwon/RooParticle
 - On Compiled C++ Code with ROOT Framework (not in ROOT CInterpreter)
 - Why Not Python?
 - Simulation Rate (Test Event)
 - C: 1.8s / 100 event
 - Python: 134.9s / 100 event (~75x)

Python

Scanning dependencies of target main
[16%] Building CXX object CMakeFiles/main.dir/main.cpp.o
[33%] Linking CXX executable main
[100%] Built target main
EVENT 0
./main 1.80s user 0.11s system 86% cpu 2.203 total

~/Documents/RooParticle/build(master*) » cd ../test/testplot

~/Documents/RooParticle/test/testplot(master*) » time python3 collision_new.py
RANDOM IMPACTING in 40fm

python3 collision_new.py 134.94s user 9.36s system 88% cpu 2:43.45 total

Simulation Method Method

Framework Code

Particle Scattering Simulation: Sample

SAMPLE of Monte-Carlo with Electric Force (Fixed Target Experiment)

Target: $_{79}Au^{79+}$

Projectile: ${}_{2}^{4}He^{2+}, E_{k} = 4.66 \text{MeV} (v = 0.05c)$

Impact Parameter b:[0,80] fm

Simulation Time Range : [0, 10000] fm/c

Number of Projectiles: 4 000

Perturbed Fixed Target Experiment

Overall Scheme / Controlled Multibody Scattering

- Compare A₁'s scattering angle between
 - $-A_2$'s **Z=0** and **Z=2** (Perturbation : A_2 's **Z**)

(Before Perturbation) Scattered perfectly backward.

NEED TO KNOW WHAT IS HAPPENED

3 Body Collision: Experiment Design

Toward Reality

Conceptual Design of Detector Setup

Blue: Silicon pixel detector

Green: α Source (collimators are skipped in visual)

Yellow: Gold foil

GOAL: Double Alpha Scattering = 2 x Rutherford scattering?

- Needed Research
 - Cross-section calculation
 - TRC = Rutherford + bi-Projectile + Triple
 - Target event detection efficiency/background calculation
 - Detection Efficiency of ALPIDE
 - NIEL Effect of Ultra Low Energy α
 - Mechanical Design
 - Circuit Design (PCB + Detectors + DAQ Board)
 - Install setup into vacuum environment

Summary & Outlook

- HIC Production was finished
 - 그동안 ITS² 로 고생하셨던 분들께 감사드립니다...(하지만 이젠 ITS³이 있습니다)
- Went to CERN Summer Student Programme 2019
- NEW Physics experiment is designed
 - Its simulation is now doing...

Backup

Analysis Scheme

Tree Data

Raw Data (RUN # 00)

Event No.	Pix. X	Pix. Y
1	1	1
2	3	5
3	7	7
3	8	7
4	3	3
5	5	4
6	8	3
6	9	3
6	7	4
6	8	4
6	1	6
6	2	6
6	3	6

Procedure to Write TTree

- 1. Separate data **Event by Event**
- 2. Clustering pixels in a event
- 3. Analyze clusters
- 4. Write data into TTree

Recorded Data (for each cluster)

- Run Number
- 2. Event Number
- 3. Number of Cluster in a Event
- 4. Number of Pixels in the Cluster
- 5. Pixel Number in Cluster
- 6. Shape of Cluster Shape-Record syntax: Next Slide

Clustering with all pixels nearby A cluster is saved in TTree in a row

How to Save Shapes

- All shapes are saved with 3 numbers
 - [Width for X, Width for Y, Shape Number]

Tree Data

Shape Number = 2+4+16+32 = 30

Shape Number = 1+2+4=7

Single Pixel Cluster is Dominant Pixels per Cluster = [1 : ~400]

Single Cluster Event is Dominant Pixels per Cluster = [1 : ~36]

- If mirror symmetry → Similar Frequency
- If rotational symmetry but not mirror symmetry
 - → Different, frequencies depend on axes pixels spreaded

Simulation Method

How to describe physics

Original, t = 0for mass=m

t = 1

t = 2

V0

 $x_1 = x_0$

 $v_1 = v_0$

 $x_2 = x_0 + v_0 dt + F_1/m (dt^2/2)$ $v = v_0 + F_1/m dt$

(dt = 1)

End when ... particles are over volume OR

simulation time is over

Collect data

Collect data

Collect data

Record on Tree

and same on all dimensions (y, z)

Summer Student Report

https://cds.cern.ch/record/2687398

You can find all of Summer Student Reports in CDS (https://cds.cern.ch/) with keyword : CERN-STUDENTS-Note-2019

- The report was uploaded.
 - Everybody can read the report from CDS
- Analysis of Followings are done.
 - Relative Frequencies of
 - Number of clusters
 - Number of pixels in each cluster
 - Shapes
 - Number of pixels in each cluster with different DAC setting
 - VCASN
 - ITHR
 - Noise Analysis (Fake Hit Rate)

