

Department of Physics Inha university, Incheon

## Beauty production via semi-electronic decay channel in Pb-Pb collisions at 5.02 TeV



Jonghan Park

koALICE national workshop - Jeongseon 05 Jan 2020



## **Physics Motivation**

### Heavy flavors

- Produced in hard scattering processes in the initial stage of the collisions
- In-medium parton energy loss
  - Undergo both elastic (collisional) and inelastic (radiational) collisions
  - Expect to be mass and color charge dependences
    - Color charge effect :  $\Delta E_{g} > \Delta E_{q}$  due to stronger coupling
    - Mass effect :  $M_{u,d,s} < M_c < M_b \leftrightarrow \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$
- Provide a hint of mass dependence of the in-medium parton energy loss model by comparing between charm and beauty productions



Beauty-hadron decay electrons in Pb-Pb at 5.02 TeV



### Analysis Procedure

- Separate beauty contribution via impact parameter (IP) from electron candidates
  - IP : Distance of Closest Approach to the primary vertex in xy plane
  - Beauty hadrons have larger decay length  $\rightarrow$  lead to larger IP than other sources
- Fit the inclusive electron DCA distribution using templates obtained from MC with corrections





ALI-PREL-329921

Jonghan Park (Inha univ.)



Beauty-hadron decay electrons in Pb-Pb at 5.02 TeV



## New $\Lambda_c$ Correction

- Solution Not correct  $\Lambda_c p_T$ , just correct  $\Lambda_c/D^0$  ratio
  - assumed for all  $p_T$  range and all centrality cases
- Solution Adding 2018 sample, newly measured  $\Lambda_c/D^0$  ratio
  - Possible to separate centralities  $\rightarrow$  0-10% and 30-50%
  - The ratio has  $p_T$  dependence  $\rightarrow$  need to correct  $\Lambda_c p_T$  shape



ALI-PREL-157053

Jonghan Park (Inha univ.)

Beauty-hadron decay electrons in Pb-Pb at 5.02 TeV

- With 2015 sample, one data point at high  $p_{T}$  with wide centrality range  $\rightarrow$  constant ratio was

ALI-PREL-321698





## $\Lambda_{c} p_{T}$ Correction

- $\subseteq$  Weighting factor is calculated as  $\Lambda_{c,data}/\Lambda_{c,MC}$ 
  - Interpolate a ratio of  $\Lambda_{c,data}/\Lambda_{c,MC}$  using exponential function
- $\Lambda_c$  spectrum in MC after correction agrees with data
- Seed to check different charm species fraction



Jonghan Park (Inha univ.)

Beauty-hadron decay electrons in Pb-Pb at 5.02 TeV





## **Correction of Different Charm Species Fraction**

Solution Check the relative fraction of different charm species w.r.t D<sup>0</sup>

- Different charm species have different decay length  $\rightarrow$  different IP distribution  $(D^0: 120 \ \mu m, D^+: 300 \ \mu m, D_s: 300 \ \mu m, \Lambda_c: 50 \ \mu m)$
- The measured ratio is scaled by branching ratio (since  $D_s$  and  $D^0$  have almost similar branching ratio, no scaling on  $D_s/D^0$ )

All fractions are in agreement with the measured results



Jonghan Park (Inha univ.)

Beauty-hadron decay electrons in Pb-Pb at 5.02 TeV





### Results

- at 5.02 TeV RED
- $\odot$  Compare with pp reference measured at 5.02 TeV with  $\langle T_{AA} \rangle$  scaling BLUE



### Invariant yield of electrons from beauty-hadron decays in 30-50% Pb-Pb collisions

Beauty-hadron decay electrons in Pb-Pb at 5.02 TeV



### Results

- RAA of beauty-decay electrons in Pb-Pb collisions at 5.02 TeV
- Comparison between different centralities
  - $R_{AA}$  (0-10%) <  $R_{AA}$  (30-50%) for 4 <  $p_T$  < 8 GeV/c
- $\bigcirc$  Comparison of **b** $\rightarrow$ e with c,b $\rightarrow$ e
  - Hint of beauty quarks undergoing less energy loss than charm quarks at low  $p_{T}$



### Jonghan Park (Inha univ.)

Beauty-hadron decay electrons in Pb-Pb at 5.02 TeV





### Issue in 30-50%

- Second Secon
  - TPC-TOF and TPC-EMCal results have large discrepancy in the common  $p_T$  region (4 <  $p_T$  < 8) - TPC-EMCal was not accepted at QM approval session
- Have to resolve/understand the discrepancy for paper proposal
- Tried several checks for investigating the problem but not resolved yet



Jonghan Park (Inha univ.)

### 05 Jan 2020



9

## Remake 0-10% result

- updates
  - All cuts are the same as before
  - New weight procedure, new fitting routine, adding new correction, etc.
- New result agrees with the old preliminary within 10% deviation



Beauty-hadron decay electrons in Pb-Pb at 5.02 TeV





## Activities on ITS upgrade

### **ITS Commissioning Shift**

- What we do?
  - Do calibration runs for IB (threshold scan, fake-hit rate, readout test, etc.)
  - To monitor the status of power and cooling for the detector safety
  - React immediately in case of problem (communicate with experts)

### **Reception Test**

Test two different types of staves

- Set (Outer Layer)
  - 14 HICs per stave and 7 HICs per half-stave
  - Take ~6 hours per half-stave
- See ML (Middle Layer)

  - Take ~4 hours per half-stave
- Test half-stave per setup at a time
- Test single stave  $\rightarrow$  re-do the staves in a layer

Jonghan Park (Inha univ.)

Beauty-hadron decay electrons in Pb-Pb at 5.02 TeV

### Participate the ITS commissioning shift since May 2019 and take once per month





## Summary & Outlook

- Study beauty production via semi-electronic decay channel in Pb-Pb at 5.02 TeV
- Participate reception test and detector commissioning shift
  - Finished the reception test
  - Shift will be continued once CERN reopens
- To do list for paper proposal
  - Resolve/understand a discrepancy between TPC-TOF and TPC-EMCal analyses
  - Study the correlated systematic study between 0-10% and 30-50%

# Thanks and Happy New Year

Jonghan Park (Inha univ.)

Beauty-hadron decay electrons in Pb-Pb at 5.02 TeV

05 Jan 2020



12

BACKUP

### $b \rightarrow e in Pb-Pb at 5.02 TeV$



Jonghan Park (Inha univ.)

Beauty-hadron decay electrons in Pb-Pb at 5.02 TeV







## Investigate a discrepancy

- Resolved *p*<sub>T</sub> binning bug in TPC+EMCal code
  - Fixed yield decreases
- Observed yields between TPC+TOF and TPC+EMCal analyses are different in the common  $p_{\rm T}$  region
- Tried to investigate the discrepancy
  - Look at the yield on HFe level
  - Effect of ITS requirement
  - Fit routine variations
  - $\Lambda_c$  effect on beauty level
  - Cross-check with TPC-TOF



Beauty-hadron decay electrons in Pb-Pb at 5.02 TeV





### HFe discrepancy solved

- event cuts
- Corrected code gives same HFe results



Jonghan Park (Inha univ.)

• Found a bug in MC efficiency : denominator of the efficiency was filled in a stack loop before

Beauty-hadron decay electrons in Pb-Pb at 5.02 TeV



### ITS Layer cut tests

- Test effect of increased resolution by changing the cut on ITS layer requirement
  - Default : kAny, Variations : kFirst and kBoth
  - No major effect (decreases statistics  $\rightarrow$  fluctuation between 8-12 GeV/c)



Beauty-hadron decay electrons in Pb-Pb at 5.02 TeV





### Fit routine variations

- Varied fitting routine:
  - Three templates  $(D \rightarrow e, \Lambda_c \rightarrow e \text{ and } B \rightarrow e) \rightarrow \text{no trend, fluctuating}$



Jonghan Park (Inha univ.)

- Use the weighted template fit method  $\rightarrow$  beauty yield decreases about 5% with the weighted fitting routine

Beauty-hadron decay electrons in Pb-Pb at 5.02 TeV



### Fit routine variations

- Varied fitting routine:
  - - Instead of subtracting the non-HFe, add it as a third template

  - \_



- Three templates  $(D + \Lambda_c \rightarrow e \text{ and } B \rightarrow e \text{ from MC} and non-HFe \text{ from data-driven invariant mass method})$ 

- Compared between non-weighted template fit method and weight template fit method with tree templates • Entries of the templates in the non-weighted template fit should be integer (Poissonian statistics) Ratio plot is rather bumpy  $\rightarrow \sim 5\%$  differences in first few bins with respect to the weighted template fit

05 Jan 2020

Beauty-hadron decay electrons in Pb-Pb at 5.02 TeV



### $\Lambda_{\rm c}$ correction effect

- New  $\Lambda_c$  weight decreases the beauty yield for  $p_T > 3 \text{GeV}/c$  in both analyses
  - $\Lambda_c$  contribution decreases  $\rightarrow$  wider charm template  $\rightarrow$  beauty yield decreases



Beauty-hadron decay electrons in Pb-Pb at 5.02 TeV



## **Cross-check with TPC+TOF**

- Fit TPC+EMCal data with TPC+TOF templates
  - Fit inclusive electron DCA with 4 templates (charm, beauty, Dalitz and conversion)
  - Fit HFe DCA with 2 templates (charm and beauty)
- Both template fits are in agreement
- Higher than default TPC+EMCal points



Jonghan Park (Inha univ.)

### Beauty-hadron decay electrons in Pb-Pb at 5.02 TeV



## **Cross-check with TPC+TOF**

- Use same beauty feed down procedure as TPC+TOF
  - Previous method checked up to electron's greatgrandmother, but TPC+TOF method checks 100x back in the decay chain for a beauty mother
- Use exact same weight as TPC+TOF
  - Adopted all correction functions used in TPC+TOF
- Use both TPC+TOF feed down method + weight
  - Increases beauty yield slightly
- Fit TPC+EMCal inclusive electrons with 4 templates
  - Agrees with TPC+EMCal results when the TPC+TOF feed down and weights are used
- Conclusion : difference in results is not from the MC, but an intrinsic difference in the data







### **Reception Test**







### Jonghan Park (Inha univ.)

### Beauty-hadron decay electrons in Pb-Pb at 5.02 TeV







