Heavy Quarks
iN Quark-Gluon Plasma
and Heavy Dark Matter Particles
in Early Universe

Seyong Kim
Sejong University




l. S. Kim and M. Laine, “Rapid thermal co-annihilation
through bound states in QCD”, JHEP1607 (2016) 143

2. S. Kim and M. Laine, “On thermal corrections to
near-threshold annihilation”, JCAP1701 (2017) 013

3. S. Kim and M. Laine, "“Studies of a thermally
averaged p-wave Sommerfeld factor”, Phys. Lett. B795
(2019) 469

4. S. Biondini, S. Kim and M. Laine, “Non-relativistic
susceptibility and a dark matter application”, arXiv:
1908.07541 [hep-ph].
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Evolution of Nuclear Collision
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Evolution of Universe
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chemical equilibrium
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Initial State Equilibrium State

https://chem-guide.blogspot.com/2010/04/dynamic-nature-of-chemical-equilibrium.html
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evolution of the number density
in thermal environment:
Lee-Weinberg equation
(B.W. Lee and S. Weinberg, PRL39 (1977) 165)

e the number density (n) of heavy quarks or dark matter (Boltzmann
equation)

(0:+3H)n=— <ov > (n* —ng,)

e Iin linearized form

(0t +3H)Nn = —Tchem(N— Neg) + O(N— neg)?

where [ chem = 2 < OV > ngq, chemical equilibriation rate



Pair annihilation/Pair creation




Pair annihilation/Pair creation




Sommerfeld factor

e Sommerfeld effect enhances the Born matirix elements

|Mesummed |2 — SlMtree |2
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Fvolution of dark matter
number density
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Heavy quark annihilations vs

in thermal environment

- heavy quark and anti heavy quark annihilates into light
quarks and gluons

- heavy dark matter particles annihilate into light
standard model particles

- we are interested in the case that the temperature (T)
scale is far below the mass (M) scale, M >> T



Heavy quarks/quarkonium
and NRQCD factorization
(E. Braaten, G.T. Bodwin, G.P. Lepage, PRD51 (1995) 1125)

- inclusive decay rates (sum over all the possible final
states) of heavy quarkonium can be separated into the
short distance perturbative QCD effect and into the
long distance structure associated with quarkonium
structure using NRQCD (non-relativistic effective field

theory QCD)
« M >>Mv >> Mv"2

. factorization theorem (the above structure can be
“proven” analytically)



NRQCD

- expanding QCD Lagrangian in power of heavy quark velocity

. expanding operators in powers of heavy quark velocity

L=Ly+dL,
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| attice gauge theory

- Spacetime regularized Euclidean quantum field theory
- Fully non-perturbative definition of a QFT

- Quantum mechanics as a statistical mechanics problem

- Monte Carlo method

- Difficult to handle real time physics



| attice gauge theory |

¢ In quantum mechanics ((0+1)-dimensional quantum field theory),
solve

A2, t) = (1

and calculate o
(wrle 70 y;)

e where ,

P
2m

H= - V(x)




| attice gauge theory |

e consider

 (wrle D y(n)
= (wr(t)| [ o xjx) xe™ 0] / & XX |wi(t))

/d3 /d3xwf(x X, ) (x| e (1) |/
e and Green function method

G(x, t7|x, ;) = (x|e” 1),

and
wi(X, ) = / X Gx, X, 6)Wi(X, 1)

A N ) '
G(x, ¥, 6) = (xle""T|x') = [ [T axe 0 = [ Dx(t)e~*
juxt
and

S— dtL[x )] = /tfdtr (—) —V(x ())]



| attice gauge theory Il

e partition function

_ A — En __h_
Z:Tr(e “BT) =Ze kgT =/dx(x|e ke T | x )

With kg = 1 and /i =1 and 1; — T; = + and the periodic boundary
condition,

z— / Dx(t)eS,

and

Szf:dt %m(%)er V(x(x))|

e Euclidean space (it — T) and statistical mechanics



| attice gauge theory IV

- quantum mechanics is a statistical mechanics problem

. cf. M. Creutz and B Freedman, “A statistical approach to
quantum mechanics’, Annals. Phys. 132 (1981) 427

- generalization to quantum field theory (thermodynamic
limit of statistical mechanics)

- Green functions are correlation functions in statistical
mechanics



Chemical equilibration rate as

a transport phenomenon

- D. Boedeker and M. Laine, JHEP1207 (2012) 130 and
JHEP1301 (2013) 037

- |n a non-relativistic field theory, the number density is
related to the energy density (Hamiltonian)

- change of the number density can be studied by
insertion of four-quark operator

- In thermal system, “trace over states” is performed and
the three point function becomes the two point function



What to calculate for S-wave
Sommerfeld factor?

1

P1 - 2_NCRe<Gg(x n(B 0 0 0)>
P, = —<G§i (B,0:0,0)G.(B,0:0,0)) ,
2NC
_ 0 = 2

P, = N2<Gga,, (B,0;0,0)G) (B, 0;0,0)) .

e singlet Sommerefeld factor
_ P,
1 P12 .
e octet Sommerefeld factor
NzP; — P,




S-wave Sommerfeld factor
(lattice and perturbative)
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Bound state effect
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Why larger Sommertfeld
factor?

- When incoming heavy particle belongs to a bound
state, the probability to meet the other particle is
higher than free particle case

- strong interactions have larger coupling constants



Why P-wave?

- incoming particle system can have any relative angular
momentum

- the total probability of an annihilation process is sum of
all possible channels



What to calculate for P-wave
Sommerfeld factor

e P-wave Sommerfeld factor

PP
M2 P?

Sp —
with

po=Tr(A;Gy(B,0;0,0;/)G"(B,0;0,0)) —Tr(Gv(B,0;0,0; )A;G"(B,0;0,0))



S- and P-wave Sommerfeld

factor
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Beyond linear response theory
(T. Binder et al. PRD98 (2018) 115023)

e the number density (n) of heavy quarks or dark matter (Boltzmann
equation)

(0:+3H)n=— <ov> (n* —n,)

e in linearized form

(0t +3H)Nn = —Tchem(N— Neg) + O(N— Neg)?
where [ chem = 2 < GV > ngq, chemical equilibriation rate
e beyond linear response regime

u(n)
(d+3H)n=— <ov> (ezl‘:BT — 1)n§q



What to calculate for non-relativistic
particle number susceptibility?

[ {(ReTr G, ReTrGy) — (ReTr Go)” }
B 2<ReTrG0>2 |

A

P2




Number susceptibility for non-
relativistic particles
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Conclusion |

- For the first time, non-perturbative computation of
chemical equilibration rate becomes possible using
Euclidean lattice field theory for heavy particles.

- Non-perturbative effect can be ~100 larger than a naive
estimate

- A question, “the number density of heavy quarks in
quark-gluon plasma” is similar to “the number density of
heavy dark matter particles in early universe” in the sense
that



Conclusion |l

- Lattice gauge theory is necessary when perturbative
estimate is not possible at all because non-perturbative
effect can be an inherent property of the problem

Physics of dark matter particles are not known and
interaction can be non-perturbative interaction. In this
case, thermal effect is quite subtle and lattice gauge
theory method is essential



