$f_0(980)$ Production with ALICE

Junlee Kim^{1,a}, Beomkyu Kim^{2,a}, Francesca Bellini^{3,a}

Jeonbuk National University, South Korea
 Inha University, South Korea
 CERN

January 6, 2020 Ko-ALICE National Workshop

Status Summary for $f_0(980)$ Analysis

- $f_0(980)$ production in pp collisions at $\sqrt{s} = 5.02$ TeV
 - ▶ Preliminary result has been approved in QM 2018.
 - Analysis Note : https://alice-notes.web.cern.ch/node/801
- ▶ Multiplicity dependent $f_0(980)$ production in pp collisions at $\sqrt{s} = 13$ TeV
 - ▶ The transverse momentum spectrum with INEL>0 event class has been approved.
 - Multiplicity dependent study has not been approved in the summer conferences.
 - ▶ We are aiming Hard Probes 2020 for the approval.
 - Analysis Note : https://alice-notes.web.cern.ch/node/884
- ► Multiplicity dependent $f_0(980)$ production in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV
- ▶ $f_0(980)$ production in p-Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV
 - Analysis are going to be finalized to check the consistency with pp analysis results.
 - ▶ Preparation of approval in Hard Probes 2020.
 - Analysis Note : https://alice-notes.web.cern.ch/node/1018

Approved Figures

Short-lived Resonances

- Measured resonance yields are modified in the hadronic phase via regeneration and re-scattering.
- Short-lived resonances are powerful probes to understand late hadronic phase.
- ▶ The measurements of short-lived resonances in small collision systems provide the baseline for heavy-ion collisions measurement.

$f_0(980)$ Resonance

- Quark contents of f₀(980) is still controversial if it is a molecular state or resonance including a glueball case.
- Recently, enhancement of strangeness particles has been observed even in small systems.
- Measurement of enhancement of f₀(980) would give a hint of quark contents of f₀(980).

	$ ho^0$	K^*	$f_0(980)$	ϕ
Mass(MeV)	775	892	990	1020
J^P	1-	1-	0^+	1^{-}
Quark	$\frac{u\bar{u} + d\bar{d}}{\sqrt{2}}$	$d\bar{s}$???	$s\bar{s}$

Recent X(3872) Results

- ► Recent measurement shows the increasing trend of particle ratio from small system (~0.1) to large system (~1).
- Indication of enhancement of recombination in the late phase of collisions due to lower bounding energy.
- Signature of mesonic molecule?

Experimental Data Sets and M.C. production

▶ proton-proton collisions at $\sqrt{s} = 5.02$ TeV

► LHC15n_pass3 (Preliminary result)

• proton-proton collisions at $\sqrt{s} = 13$ TeV

- LHC16g, LH16h, LH16i, LHC16j, LHC16k(pass2), LHC16l(pass2), LHC16o, LHC16p (2016)
- LHC17g, LHC17i, LHC17j, LHC17k, LHC17l, LHC17m, LHC17o, LHC17r (2017)

▶ proton-Lead collisions at $\sqrt{s_{\rm NN}} = 5.02 \text{ TeV}$

- ▶ LHC16q, LHC16t
- CENT_wSDD + FAST for maximal statistics

▶ proton-Lead collisions at $\sqrt{s_{\rm NN}} = 8.16$ TeV

► LHC16r

► CENT_wSDD + FAST for maximal statistics

▶ Two types of M.C. production have been used.

- Resonance injected M.C. for evaluating efficiency and acceptance
- ▶ General purpose M.C. for evaluating normalization factors.

Nominal Selection

- Event Selection
 - ▶ kINT7 Trigger
 - ▶ The number of SPD vertex contributor ≥ 1
 - \triangleright | $z_{\rm vtx}$ |<10 cm
 - ▶ SPD pileup rejection(MultBins)
- Track Selection
 - Global Trackig(0x20 in AOD)
 - $\blacktriangleright p_{\rm T} > 0.15 \ {\rm GeV}/c$
 - $\blacktriangleright \mid \eta \mid < 0.8$
- ▶ Multiplicity Estimator as V0M for pp
- ▶ Multiplicity Estimator as V0A for p-Pb
 - Reference : https://twiki.cern.ch/twiki/bin/ viewauth/ALICE/ReferenceMult

Particle Identification (pp@13 TeV)

▶ $f_0(980)$ have been reconstructed via $f_0(980) \rightarrow \pi^+\pi^-$ decay.

▶ PID is needed to select charged pions only.

- ▶ TOF and TPC subsystems have been used to select pion tracks.
 - The number of σ with pion mass assumption has been used
 | σ_{TOF} |<3 if TOF is available.
 - $|\sigma_{\text{TPC}}| < 2$ if TOF is not available.

Like-Sign(LS) Background Subtraction

 Major uncorrelated background shape has been estimated by Like-Sign Shape in a given event class

►
$$y_{\rm LS} = 2\sqrt{y_{++}y_{--}}$$

• After subtracting combinatory background, peaks of all resonances decaying to $\pi^+\pi^-$ come out.

Signal Extraction

- Three resonances and remaining backgrounds have been considered to extract $f_0(980)$.
 - Each resonance is described as relative Breit Wigner function
 - Empirical distribution for backgrounds.

• $f_{\rm BG}(M_{\pi\pi}) = (M_{\pi\pi} - 2m_{\pi})^n A \exp(BM_{\pi\pi} + CM_{\pi\pi}^2)$

• $f(M_{\pi\pi}) = N_{\rho} rBW_{\rho^0}(M_{\pi\pi}) + N_{f_0} rBW_{f_0}(M_{\pi\pi}) + N_{f_2} rBW_{f_2}(M_{\pi\pi}) + f_{BG}(M_{\pi\pi})$

Corrections to the Spectrum

$$\frac{d^2N}{dydp_{\rm T}} = \frac{1}{N_{\rm evt}} \frac{1}{\Delta y \Delta p_{\rm T}} \frac{N_{\rm raw}}{{\rm Acc} \times \epsilon} \frac{1}{{\rm B.R.}} \epsilon_{\rm trig} f_{\rm vtx} f_{\rm S.L.}$$
• Acc corresponds to acceptance correction.
• Acc $\times \epsilon = \frac{N_{\rm rec}}{N_{\rm gen}}$
• $\epsilon_{\rm trig}$ corresponds to trigger efficiency
• $f_{\rm vtx}$ corresponds to to event loss from vertex selection
• $f_{\rm S.L.}$ corresponds to signal loss from event selection
• $f_{\rm NINEL>0} = \frac{Y_{\rm kINT7\ \&\ vtx}}{N_{\rm kINT7\ \&\ vtx}} \times \frac{N_{\rm kINT7}}{N_{\rm INEL>0}} \times \frac{N_{\rm kINT7\ \&\ vtx}}{N_{\rm kINT7\ \&\ vtx}}$
• $\epsilon_{\rm trig} = \frac{N_{\rm kINT7\ \&\ vtx}}{N_{\rm kINT7\ \&\ vtx}}$
• $f_{\rm vtx} = \frac{N_{\rm kINT7\ \&\ vtx}}{N_{\rm kINT7\ \&\ vtx}}$

Acceptance and efficiency correction

Correction Map of 0-100 %

- Acc $\times \epsilon$ is estimated using resonance-injected M.C. production.
- Correction map is prepared as a function of multiplicity class and $p_{\rm T}$.

$\epsilon_{\text{trig}}, f_{\text{vtx}} \text{ and } f_{\text{S.L.}} \text{ (pp@13 TeV)}$

- Each correction has been applied to normalize measurement to INEL>0.
- ▶ All factors are obtained from general-purpose M.C.
 - ▶ Large statistical uncertainty in $f_{S.L.}$ due to the small number of generated $f_0(980)$.
 - Solution : Usage of abundant particles

$d^2N/dydp_{\rm T}$ with INEL event class

Comparison with 5 TeV Results

- Consistent behaviour in the low $p_{\rm T}$
- ▶ Difference increases as $p_{\rm T}$ increases.

Multiplicity dependent $d^2N/dydp_{\rm T}$ in pp

$d^2N/dydp_{\rm T}$ with NSD event class

 0-0.3 GeV/c is extrapolated with the fitted function(Levy-Tsallis).

Multiplicity dependent $d^2N/dydp_{\rm T}$ in p-Pb

$dN/d{\rm y}$ as function of $dN_{\rm ch}/d\eta$

 Consistent behaviour can be seen between multiple collisions systems. $< p_{\rm T} >$ as function of $dN_{\rm ch}/d\eta$

Discrepancy has been observed between p-Pb@5.02 TeV and pp@13 TeV, which is also observed in other resonances.

Ratio of $f_0(980)$ to charged pions

Relative enhancement of $f_0(980)$ has not been observed.

 $R_{\rm pPb}$ of f₀(980) at $\sqrt{s_{\rm NN}} = 5.02 \text{ TeV}$

- Unexpected strong suppression has been observed especially in peripheral collisions.
- ▶ Maybe missing a factor of 2?, still under investigation..

Mistake during calculation of $R_{\rm pPb}$?

- ▶ In pp@5.02 TeV, dN/dy = 0.0378 at $dN_{\rm ch}/d\eta = 5.6$
- ► In p-Pb@5.02 TeV, dN/dy = 0.0968 at $dN_{\rm ch}/d\eta = 17.8$
 - Production of f₀(980) linearly increases as charged particle multiplicity increases.

< N_{coll} > = 6.9, 10.1103/PhysRevC.91.064905
 ▶ R_{pPb} ~
$$\frac{0.0968}{0.0378 \times 6.9} \sim 0.4$$
 < p_T > in pp = 1.0 GeV/c and p-Pb = 1.2 GeV/c, similar shape?

At least, measured numbers look properly treated during the calculation...

Possible Study of $f_0(980)$ Production in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV with ALICE

 kINT7 trigger + dedicated triggers(kSemiCentral, kCentral...)

Raw $p_{\rm T}$ Spectra of $f_0(980)$ in Pb-Pb collisions

- ▶ Need optimization of fit quality and bin definition.
- Only efficiency and acceptance effects are corrected, need full normalization.
- ► Still analyzing most central event class(0-10%)

Summary

▶ Studies of $f_0(980)$ production have been done with ALICE.

- ▶ Multiplicity dependent pp@13 TeV
- ▶ Multiplicity dependent p-Pb@5.02 TeV
- ▶ p-Pb@8.16 TeV
- Comparison between multiple collisions systems has been prepared.
- ▶ Strangeness enhancement has not been observed so far.
- Unexpected R_{pPb} have been measured.
 - ▶ Investigation of any possible mistakes are still ongoing.
 - ▶ Signature of molecular state particle??
 - ▶ Too hasty..
 - Coalescence process of $K\overline{K}$?

▶ $f_0(980)$ Production in Pb-Pb@5.02 TeV can be done.

Backup

 $< p_{\rm T} > {
m of} \ \Xi(1530)^0$

 $< p_{\rm T} > \text{of K}^{*0}(892)$

