ALICE Tier-1 Status and Plan

KoALICE National Workshop 2019 @ High1 6 January 2020

Sang-Un Ahn
On behalf of KISTI-GSDC

Contents

- Operations
- Seeking an alternative to tape-based custodial storage CHEP2019
- International Relations
- Plan & Summary

Operations

WLCG Tier-1 System Topology LHCOPN Juniper MX80 IPv4 prefix = 134.75.125.0/24IPv6 prefix = 2001:320:15:125::/64 **Asia Tier Center Forum** cream-ce (x3) 134.75.125.0/24 DELL Z9K htcondor-ce vobox (x2), site-bdii, argus, apel 80G eos-mgm (disk) xrootd-redirector (disk) squid-proxy (x2) XRootD Cluster (Disk) EOS Cluster (Disk) DELL Z9K 192.168.125.0/24 Brocade 6510 80G Tape Buffer Tape Library (2000 TB) (1500 TB) (600 TB) (3196 TB) Public 10G Private 10G SAN 8G EMC VNX Hitachi VSP IBM TS3500 Dell Compellent

Tier-1 Operations Summary

~ 3% Contribution to Total(T0+T1+T2+AF) ALICE Computing

Pledges

10% Contribution to ALICE Tier-1 Computing Requirements

Seeking an alternative to tape-based custodial storage

Sang Un Ahn¹, Latchezar Betev², Eric Bonfillou², Heejune Han¹, Jeongheon Kim¹, Seung Hee Lee¹, Bernd Panzer-Steindel², Andreas Joachim Peters², Heejun Yoon¹

¹KISTI, Daejeon, South Korea ²CERN, Geneva, Switzerland

24th International Conference on Computing in High Energy and Nuclear Physics 4 - 8 November 2019

Adelaide Convention Centre Adelaide, Australia

ATAS Project

Motivation:

- Reduction operational costs of Tape-based custodial storage and risks of tape market, the monopoly of IBM & Japanese cartridge manufacturers (Sony/Fujifilm)
- In accordance with the recent WLCG R&D activities and CERN EOS storage development CERN abandoning 2 replica policy; Erasure-coding (software RAID) implementation
- Hyper-converged infrastructure with cheap commodity hardware JBOD (Just-Bunch-Of-Disks)

CERN-KISTI R&D Collaboration:

- Experts meetings @ KISTI & CERN focusing on design of disk-based custodial storage within a budget constraint ~ 1M USD
 - Market search (JBOD), Limitation study in the combination of SAS HBA and PCle 3.0, Optimization on between data protection and usable capacity

Initial System Design

- 10 EOS front-end node, each hosts 2 EOS FSTs, each EOS FST serves 1 JBOD box
 - EOS EC (M, K) = (14, 4) to balance between usable space (77.7% of physical capacity) and data security
- M = data nodeK = parity node

- Data loss probability ~ 0.00000005% (acceptable for ALICE)
- Each front-end node equipped with 2 SAS HBA cards (2 ports for each)
 - 1 HBA = 1 JBOD, SAS multi-path configuration to be tested for HA

EOS RAIN6 (14,4)

- (x2) EOS FSTs based on Docker container
- EOS decides where to store data fragments across FST nodes randomly (no fixed scheme)

Parity node

Data node

Spare node

10

Deployment Setup

 This is a setup similar in all aspects to the CERN EOS current/future deployment

Specifications

- x10 2U x86 servers
 - x2 40G NICs, x2(x4) 12G SAS HBA cards
- x2 40G network switches
- Even number of JBOD boxes filled up to 18PB

Performance Test Results

✓ Test: Multipath Mode Multipath mode: failover (active-standby) vs. multibus (active-active) multibus mode showed the maximum I/O speed up to 6GB/s for read/write ▶ Bottleneck on PCle 3.0 (6400MB/s) failover could not fulfill the available bandwidth, limited under 1 SAS port (48Gb) pipe I/O Test: VDBench XFS, failover, VDBench AGB/s ~ 1 SAS port (4800MB/s)

Power Consumption

- JBOD Test Equipment (70 Disks)
 - JBOD (DELL ME484): idle = 830W; load = 860W (Max 960) (1.12W/TB)
 - Server: idle = 200W; load = 270W
- Switch: idle = 246W; load = 246W
- 1.75W/TB including JBOD, Server and Switch
- Disk Storages (Full Load)
- DellEMC SC7020, 2.5PB 12,120W (4.8W/TB)
- EMC <u>Isilon</u>, 16 Nodes, 2.95 PB- 13,730W **(4.6W/TB)**
- EMC VNX, 12 Nodes, 2.36 PB 5,100W (2.2W/TB)
- HITACHI VSP, 2 PB 18,300W **(9.15W/TB)**
- EMC Isilon, 15 Nodes, 1.43 PB 12,880W (9W/TB)
- EMC CX4-960, 1.5PB 14,900W **(9.9W/TB)**
- Tape Library (Full Load)
 - IBM TS3500 5-Frame (3.2PB) 1,600W (0.5W/TB)

- Confirmed the upper cap of read/write performance ~ 6GB/s (intrinsic limit by PCIe 3.0)
- Power consumption shown ~ 1.75W/TB, not uncomfortably higher than Tape (0.5W/TB)
 - High-end Enterprise Class Storage 5 ~ 9W/TB

International Relations

24-26 October 2019.

Jointly organized by TIFR Mumbai and KISTI, South Korea Venue: TIFR, Mumbai India.

http://indiacms.res.in/atcf5.html

Korea Institute of Science and Technology Information

Asia Tier Center Forum

- Started in 2015 led by KISTI, focusing on Asian-wise issues: enhancing network connectivities among regional sites
 - Great success on establishing LHCONE network in the region
 - The fifth event held at TIFR in Mumbai, India Visit atcforum.org
- Emerging agenda: distributed storage spanning the region
 - WLCG Tier becomes blurred; network-driven disruptive paradigm change Nucleus-Satellite model, storage consolidation, caching => WLCG DOMA
 - Flat budget scenario, harder to deliver what the LHC experiments require for RUN3, RUN4 and beyond
 - Innovation on the site operations and management are key to reduce the costs and the consolidated efforts are needed

KISTI-SUT Distributed Storage

Motivation:

- Pursuing the technology evolution in WLCG and answer to the questions e.g. what the benefit of storage consolidation to Asian sites, how we could realise the cost reduction
- The working model: NeIC (NDGF), CloudStor (AARNet)
- Technology: EOS, Docker, Ansible, LHCONE
- Pilot deployment done in August 2019
 - 3-day workshop @ SUT in Nakhon Ratchasima, Thailand
 - Training program in parallel for students: EOS deployment based on Docker container using Ansible playbook

Topology

ThaiREN reaches HK at 2Gbps;

SG at 1Gbps

- EOS @ KISTI
 - MGM (Master/Slave)
 - QuarkDB cluster (3 nodes)
 - 3 FSTs (30TB HDD NAS)
- EOS @ SUT
 - 3 FSTs (9TB SSD NAS)
- EOS Instance Name = testatcf

134.75.125.2

134.75.125.2

203.250.102.1

4: 134.75.205.194

6: 134.75.203.241

134.75.203.18

8: 202.179.241.205

9: 202.179.241.210

11: 100.64.253.13

12: 202.28.208.254

13: 202.28.43.139

10: pyt-to-02-bdr-pyt-link-1.uni.net.th

Resume: pmtu 1500 hops 13 back 17

2.272ms

8.729ms 3.696ms

0.431ms

0.397ms 0.669ms

0.976ms

39.954ms

44.706ms

91.354ms

91.229ms

95.587ms reached

96.071ms asymm 14

94.953ms asymm 16

Plan & Summary

Plan

• Operations:

- VM environment migrating to Hyper-converged Infrastructure (oVirt 4.3)
 - A software-defined infrastructure virtualizing all conventional hardware systems
- Upgrade to CentOS 7 or 8 (if applicable) for all Grid services and Batch clusters

ATAS Project:

- EOS Workshop @ CERN in Feb Presenting ATAS status and KISTI-SUT DS
- LBL (ALICE T2) interested in implementing ATAS design, collaboration meeting scheduled in Feb
- Targeting in production before the start of RUN3 in 2021

• ATCF:

- ATCF6 venue and schedule (TBD)
- Re-deployment of distributed storage hardening HA on EOS management, Network tuning, New site University of Tokyo (ICEPP, ATLAS T2)

Hyper-converged Infrastructure

Summary

- Flawless KISTI Tier-1 operations for ALICE experiment
- Continuous resource growth to meet the ALICE computing requirement for LHC RUN3, RUN4 and beyond
- Substantial on-going international projects and collaboration pursuing technology evolution in accordance with WLCG R&D activities

Q & A