Charm-baryon production and fragmentation fractions in pp collisions with ALICE

Jinjoo Seo
on behalf of the ALICE Collaboration

2021. 11. 07
Heavy-flavour production

\[
\frac{d\sigma^D}{dp_T}(p_T; \mu_R; \mu_F) = PDF(x_1, \mu_F) PDF(x_2, \mu_F) \otimes \frac{d\sigma^c}{dp_T}(x_1, x_2, \mu_R, \mu_F) \otimes D_{c\rightarrow D}(z = p_D/p_c, \mu_F)
\]

- **Initial state**
 Parton distribution function

- **pQCD partonic cross section**

- **Hadronisation by fragmentation**

\[d\sigma^D_{pp}(p_T; \mu_R; \mu_F) = PDF(x_1, \mu_F) PDF(x_2, \mu_F) \otimes \frac{d\sigma^c}{dp_T}(x_1, x_2, \mu_R, \mu_F) \otimes D_{c\rightarrow D}(z = p_D/p_c, \mu_F) \]

pp collisions: Test for pQCD calculations, baseline for nuclear collisions.

07 NOV 2021

Jinjoo Seo - ATHIC 2021
Heavy-flavour production

- Charm fragmentation fraction

\[f(c \rightarrow H) = \frac{\sigma(H)}{\sum H \sigma(H)} \]

- Measurements in different collision systems and at different energies agree within uncertainties.
 - Support the hypothesis that fragmentation functions are independent of the collision systems?

- Caveat
 - In 2015, only LHCb \(\Lambda_c^+ \) measurement available.
 - Rapidity range: \(2.0 < y < 4.5 \)

\(\frac{\Lambda_c}{D^0} \) ratio \(\sim 0.1 \) in \(e^+e^- \)
ALICE Detector

Time Of Flight Detector (TOF)
- PID via time-of-flight
- $|\eta| < 0.9$

Time Projection Chamber (TPC)
- Tracking, PID via dE/dx
- $|\eta| < 0.9$

Inner Tracking System (ITS)
- Vertexing, tracking
- $|\eta| < 0.9$

V0 Trigger
- Event triggering
- $2.8 < \eta < 5.1$ (V0A)
- $-3.7 < \eta < -1.7$ (V0C)

Time Of Flight Detector (TOF)
- PID via time-of-flight
- $|\eta| < 0.9$
Charm-hadron in ALICE

- **Data samples (Run 2)**

<table>
<thead>
<tr>
<th>System</th>
<th>Year(s)</th>
<th>$\sqrt{s_{\text{NN}}}$ (TeV)</th>
<th>L_{int}</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp</td>
<td>2017</td>
<td>5.02</td>
<td>\sim20 nb$^{-1}$</td>
</tr>
<tr>
<td>pp</td>
<td>2016-2018</td>
<td>13</td>
<td>\sim32 nb$^{-1}$</td>
</tr>
<tr>
<td>p-Pb</td>
<td>2016</td>
<td>5.02</td>
<td>\sim0.3 nb$^{-1}$</td>
</tr>
</tbody>
</table>

- **Hadronic decay**
 - $D^0 \rightarrow K^-\pi^+$
 - $D^+ \rightarrow K^-\pi^+\pi^+$
 - $D^{*+} \rightarrow D^0\pi^+ \rightarrow K^-\pi^+\pi^+$
 - $D_s^+ \rightarrow \phi\pi^+ \rightarrow K^+K^-\pi^+$
 - $\Lambda_c^+ \rightarrow pK^-\pi^+$ & $\Lambda_c^+ \rightarrow pK^0_S$
 - $\Sigma_c^{0,++} \rightarrow \Lambda_c^+\pi^-$
 - $\Xi_c^0 \rightarrow \Xi^-\pi^+$
 - $\Xi_c^+ \rightarrow \Xi^-\pi^+\pi^+$
 - $\Omega_c^0 \rightarrow \Omega^-\pi^+$

- **Semileptonic decay**
 - $\Lambda_c^+ \rightarrow \Lambda e^+\nu_e$
 - $\Xi_c^0 \rightarrow \Xi^-e^+\nu_e$
Comparison of p_T-differential production cross section of D meson with models

- **FONLL**: Fixed Order with Next to Leading Log resummation [JHEP (2012) 137]

 \Rightarrow NLO pQCD calculation with fragmentation functions from e^+e^- can describe the charm-meson production!
Λ_c^+ measurements in ALICE

- Λ_c^+/D^0 in pp collisions at 5.02 TeV and 13 TeV
- **PYTHIA 8, Monash**: Colour reconnection between partons from different multi-parton interactions.
- Predict baryon enhancement
 - **PYTHIA 8, CR-BLC**: CR with Junction connection topologies enhance baryon formation.

![Graph showing Λ_c^+/D^0 measurements in pp collisions at 5.02 TeV and 13 TeV](image)

References
- PYTHIA 8 Monash (EPJC 74 (2014) 3024)
- PYTHIA 8 CR-BLC (JHEP 08 (2015) 003)
- Catania (arXiv:2012.12001)
- SHM (PLB 795 (2019) 117-121)
- RQM (PRD 84 (2011) 014025)
- QCM (EPJC 78 no.4, (2018) 344)
\(\Lambda_c^+ \) measurements in ALICE

- \(\Lambda_c^+/D^0 \) in pp collisions at 5.02 TeV and 13 TeV
- **PYTHIA 8, Monash**: Colour reconnection between partons from different multi-parton interactions.

- **Predict baryon enhancement**
 - **PYTHIA 8, CR-BLC**: CR with Junction connection topologies enhance baryon formation.
 - **SHM + RQM**: Consider additional excited charm baryon states expected by the RQM.

Statistical Hadronisation Model (SHM) + additional baryon states
- **PDG**: 5 \(\Lambda_c \) (I=0), 3 \(\Sigma_c \) (I=1), 8 \(\Xi_c \) (I=1/2), 2 \(\Omega_c \) (I=0)
- **RQM (Relativistic Quark Model)**: Add 18 \(\Lambda_c \), 42 \(\Sigma_c \), 62 \(\Xi_c \), 34 \(\Omega_c \)

ALICE | \(|y| < 0.5 \)

- **pp, \(\sqrt{s} = 5 \text{ TeV} \)**
- **pp, \(\sqrt{s} = 13 \text{ TeV} \)**

PYTHIA 8 Monash
- (EPJC 74 (2014) 3024)

PYTHIA 8 CR-BLC
- (JHEP 08 (2015) 003)

Catania
- (arXiv:2012.12001)

SHM
- (PLB 795 (2019) 117-121)

RQM
- (PRD 84 (2011) 014025)

QCM
- (EPJC 78 no.4, (2018) 344)
Λ^+_c measurements in ALICE

- Λ^+_c/D^0 in pp collisions at 5.02 TeV and 13 TeV
 - PYTHIA 8, Monash: Colour reconnection between partons from different multi-parton interactions.
 - Predict baryon enhancement
 - PYTHIA 8, CR-BLC: CR with Junction connection topologies enhance baryon formation.
 - SHM + RQM: Consider additional excited charm baryon states expected by the RQM.
 - Catania: Hadronisation via vacuum fragmentation + coalescence of charm quark with light quarks in a hot QCD matter.
 - QCM: Combination of charm quarks with co-moving light quarks

07 NOV 2021

Jinjoo Seo - ATHIC 2021
Λ^+_c measurements in ALICE

- Λ^+_c down to $p_T = 0$ in p-Pb collisions
- Λ^+_c/D^0: larger in $3 < p_T < 8$ GeV/c and a lower in $p_T < 2$ GeV/c in p-Pb collisions with respect to pp collisions.
- R_{pPb}: Systematically above unity in $p_T > 2$ GeV/c, below unity in $p_T < 2$ GeV/c.
- Significant suppression for the Λ^+_c baryon in p-Pb collisions in $p_T < 2$ GeV/c

Possible modification due to radial flow or hadronisation mechanisms

\(\Lambda_c^+ \) measurements in ALICE

- \(\Lambda_c^+ \) down to 0 in p-Pb collisions
- POWHEG+PYTHIA6: CNM effect + PYTHIA 6 Parton shower + EPPS16 parameterization for PDFs.
- POWLANG: Hot deconfined medium in p-Pb collisions.
 - Describe the suppression at low \(p_T \).

\[\begin{align*}
\text{ALICE} & \quad p-Pb, \sqrt{s_{\text{NN}}} = 5.02 \text{ TeV} \\
& \quad \Lambda_c^+ (\text{arXiv: 2011.06079}) \\
& \quad \Lambda_c^+, \text{Preliminary} \\
\text{pp, } \sqrt{s} = 5.02 \text{ TeV} & \quad \Lambda_c^+ (\text{arXiv: 2011.06079})
\end{align*} \]

\[\begin{align*}
\text{ALICE} & \quad p-Pb, \sqrt{s_{\text{NN}}} = 5.02 \text{ TeV} \\
& \quad D \text{ mesons} \\
& \quad JHEP 1912 (2019) 092, 2019 \\
& \quad D \text{ (average } D^+, D^0, D^-) \\
& \quad \Lambda_c^+ \text{ baryons} \\
& \quad \Lambda_c^+ (\text{arXiv: 2011.06079}) \\
& \quad \Lambda_c^+, \text{Preliminary} \\
& \quad \text{extrapolated pp reference}
\end{align*} \]
Σ⁺⁺ measurements in ALICE

- $\Sigma_0^{0,++}/D^0$ and $\Lambda_c^+(\leftarrow \Sigma_0^{0,++})/\Lambda_c^+$ in pp collisions at 13 TeV.
- $\Sigma_0^{0,++}/D^0$ ratio shows remarkable difference between the pp and e^+e^- collisions.
- $\Lambda_c^+(\leftarrow \Sigma_0^{0,++})/\Lambda_c^+$ ratio significantly larger than e^+e^- collisions measurements.
- The larger feed-down from $\Sigma_0^{0,++}$ (~40%) partially explains the Λ_c^+/D^0 enhancement in pp collisions.

Graphical Representation

- ALICE | $|y| < 0.5$ • pp, $\sqrt{s} = 13$ TeV

- PYTHIA 8.243, Monash 2013
- PYTHIA 8.243, CR-BLC:
 - Mode 0
 - Mode 2
 - Mode 3

- SHM+RQM
- Catania
- QCM

- BR uncertainty

References

- PYTHIA 8 Monash (EPJC 74 (2014) 3024)
- PYTHIA 8 CR-BLC (JHEP 08 (2015) 003)
- Catania (arXiv:2012.12001)
- SHM (PLB 795 (2019) 117-121)
- RQM (PRD 84 (2011) 014025)
- QCM (EPJC 78 no.4, (2018) 344)

07 NOV 2021

Jinjoo Seo - ATHIC 2021
$\Sigma_{c}^{0,++}$ measurements in ALICE

- $\Sigma_{c}^{0,++}/D^{0}$ and $\Lambda_{c}^{+}(\Sigma_{c}^{0,++})/\Lambda_{c}^{+}$ in pp collisions at 13 TeV

- $\Sigma_{c}^{0,++}/D^{0}$ ratio shows remarkable difference between the pp and e$^+e^-$ collisions.

PYTHIA 8 CR-BLC, SHM+RQM, QCM and Catania can describe the Λ_{c}^{+} and $\Sigma_{c}^{0,++}$

Do we also understand $\Xi_{c}^{0,+}$ and Ω_{c}^{0}?

07 NOV 2021 Jinjoo Seo - ATHIC 2021
\(\Xi^0_c, + \) measurements in ALICE

- \(\Xi^0_c \) measurements in pp collisions at 13 TeV
 - **PYTHIA 8 Monash, PYTHIA 8 CR tunes, SHM+RQM and QCM**: Significantly underestimate the ratios.
 - **Catania**: Describes better the ratios in the measured \(p_T \) interval.
 - \(\Xi^0_c / \Sigma^0_c \) ratio: **Monash** describes the magnitude.
 - Similar enhancement for \(\Xi^0_c \) and \(\Sigma^0_c \) are shown w.r.t e+e- collisions.

Graphs

ALICE pp, \(\sqrt{s} = 13 \text{ TeV} \)
- **\(|y| < 0.5 \)**
- **\(\Xi^0_c / D^0 \)**
- **\(\Xi^+ / D^0 \)**
- **\(\Xi^0_c / D^0 \)**
- **\(\Xi^0_c / \Lambda_c^+ \)**

PYTHIA 8 Monash (EPJC 74 (2014) 3024)
PYTHIA 8 CR Modes (JHEP 08 (2015) 003)
SHM (PLB 795 (2019) 117-121)
RQM (PRD 84 (2011) 014025)
QCM (EPJC 78 no.4, (2018) 344)
Catania (arXiv:2012.12001)
\(\Omega_c^0 \) measurements in ALICE

- **\(\Omega_c^0 \) measurements in pp collisions at 13 TeV**
 - No measurement of \(\text{BR}(\Omega_c^0 \to \Omega^- \pi^+) \) → A theoretical calculation used to scale the models: \((0.51 \pm 0.07)\% \)
 - **PYTHIA 8 Monash, CR-BLC** : Underestimate the measurement.
 - **Catania(w/o res.), QCM** : Underestimate the measurement even though including the coalescence process.
 - **Catania(w/ res.)** : Closer to the measurements considering the additional resonance states.

\[
\text{BR}(\Omega_c^0 \to \Omega^- \pi^+) = (0.51 \pm 0.07)\% \ [\text{EPJC 80, 1066 (2020)}]
\]

\[
\text{BR}(\Omega_c^0 \to \Xi_0^0) = (0.51 \pm 0.07)\% \ [\text{EPJC 80, 1066 (2002)}]
\]

\[
\text{BR}(\Omega_c^0 \to \Omega^- \pi^+) \times \Omega_c^0 / D_0
\]

\[
\text{BR}(\Omega_c^0 \to \Xi_0^0) / \Xi_c^0
\]
Ω_c^0 measurements in ALICE

- Ω_c^0 measurements in pp collisions at 13 TeV
 - No measurement of $\text{BR}(\Omega_c^0 \to \Omega^- \pi^+)$ → A theoretical calculation used to scale the models: $(0.51 \pm 0.07)\%$

- PYTHIA 8 Monash, CR-BLC: Underestimate the measurement.
- Catania (w/o res.): Underestimate the measurement even though including the coalescence process.
- Catania (w/ res.): Closer to the measurements considering the additional resonance states.

We measure now all single charm hadron ground states! Are fragmentation functions universal across colliding systems?
Charm fragmentation fractions

- Charm fragmentation fractions
 - Fragmentation fraction for the Ξ_c^0 baryon is measured for the first time.
 - Not counting the contribution of D^{*+}, which feeds into the D^0 and D^+ mesons.

<table>
<thead>
<tr>
<th>H_c</th>
<th>$f(c \to H_c)$[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>D^0</td>
<td>$39.1 \pm 1.7(\text{stat})^{+2.5}_{-3.2}(\text{syst})$</td>
</tr>
<tr>
<td>D^+</td>
<td>$17.3 \pm 1.8(\text{stat})^{+1.7}_{-1.9}(\text{syst})$</td>
</tr>
<tr>
<td>D_s^+</td>
<td>$7.3 \pm 1.0(\text{stat})^{+1.9}_{-1.1}(\text{syst})$</td>
</tr>
<tr>
<td>Λ_c^+</td>
<td>$20.4 \pm 1.3(\text{stat})^{+1.6}_{-2.2}(\text{syst})$</td>
</tr>
<tr>
<td>Ξ_c^0</td>
<td>$8.0 \pm 1.2(\text{stat})^{+2.5}_{-2.4}(\text{syst})$</td>
</tr>
<tr>
<td>D^{*+}</td>
<td>$15.5 \pm 1.2(\text{stat})^{+4.1}_{-1.9}(\text{syst})$</td>
</tr>
</tbody>
</table>

+ Ξ_c^+ contribution is considered as Ξ_c^0 contribution

- Charm fragmentation fractions are not universal

07 NOV 2021
Charm production cross section

- **Charm production cross section at the LHC**
 - First measurement of charm production cross section, including all the ground state charm hadron measurements, per unit of rapidity at midrapidity in pp collisions at 5.02 TeV

 \[d\sigma^{c\bar{c}}/dy \big|_{|y|<0.5} = 1165 \pm 44\text{(stat)}^{+134}_{-101}\text{(syst)} \mu b \]

 - According to new measured charm fragmentation fractions, updated charm cross section measurements in pp collisions at 2.76 TeV and 7 TeV are about 40% higher than the previously published results.

 - Charm cross section measurements exploiting updated fragmentation fractions lies at the upper edge of the pQCD calculations.
Summary

- First measurement of $\Sigma_c^{0,++}$, $\Xi_c^{0,+}$ and Ω_c^0 production cross section in pp collisions at 13 TeV.
- First measurement of Λ_c^+ down to $p_T = 0$ GeV/c in p-Pb collisions at 5.02 TeV.

- Large enhancement of all charm-baryon production in pp collisions w.r.t e^+e^- collisions.
- None of the models describe the enhancement of charm-baryon production rates.
 ✓ Modeling of charm baryons with a strange quark is challenging.
- The charm fragmentation fractions are not universal across colliding systems.

- ALICE is ready for data-taking with Run 3 and Run 4.
 ✓ Higher statistics, better precision and more differential measurements for charm baryons awaiting!
Back up
Charm FF in e^+e^- & ep

• Charm fragmentation fraction
 • Assumption is needed due to lack of knowledge about production of $\Xi_c^{0,+}$ and Ω_c^0
 • $f(c \to \Xi_c^+)/f(c \to \Lambda_c^+)=f(c \to \Xi_c^0)/f(c \to \Lambda_c^+)$
 • $f(s \to \Xi^-)/f(s \to \Lambda)=0.066$
 • $f(c \to \Omega_c^0)/f(c \to \Lambda_c^+)=f(s \to \Omega^+)/f(s \to \Lambda)=0.004$
 • $f(c \to \Omega_c^0)/f(c \to \Xi_c^0)=f(s \to \Omega^-)/f(s \to \Xi^-)=0.062$

• Caveat
 • NO measurement of $\sigma(\Xi_c)$, $\sigma(\Xi_c)$ and $\sigma(\Omega_c)$.
 • In 2015, only LHCb Λ_c^+ measurement available.
 • Rapidity range : $2.0 < y < 4.5$
Charm hadron/D^0 Ratios

- The ratio of p_T integrated cross sections of the various charm hadrons and D^0 meson
- SHM for charm baryon is sensitive to a hadronisation temperature.

arXiv:2105.06335

ALICE, pp, $\sqrt{s} = 5.02$ TeV
PYTHIA 8: JHEP 08 (2015) 003
Monash 2013
CR Mode 0
CR Mode 2
CR Mode 3

arXiv:2105.06335

ALICE, pp, $\sqrt{s} = 5.02$ TeV
PDG, $T_h = 160$ MeV
RQM, $T_h = 160$ MeV
PDG, $T_h = 170$ MeV
RQM, $T_h = 170$ MeV
• Λ_c^+/D^0 in pp at 5.02 TeV (ALICE vs CMS)

 • ALICE and CMS measurements are consistent.

• Λ_c^+/D^0 in p-Pb at 5.02 TeV (ALICE vs LHCb)

 • Suggest an enhancement of the ratio at mid rapidity with respect to forward and backward rapidity.
$\Xi_0^c \rightarrow e^+ \Xi^- \nu_e$

- **Unfolding**
 - Unfolding
 - The p_T of $e\Xi$ pairs is corrected for the missing momentum of the neutrino using unfolding techniques.
 - Convergence of the Bayesian unfolding is achieved after three iterations.

\[p_T \text{ of } e\Xi \text{ pairs is corrected for the missing momentum of the neutrino using unfolding techniques.} \]

\[2 < p_T^{e\Xi} < 12 \text{ GeV/c} \]

\[M(e\Xi) \text{ (GeV/c}^2) \]

\[\Xi_0^c \rightarrow \Xi^e \nu_e \text{ and charge conj.} \]

\[\text{Reconstructed } p_T^{e\Xi} \text{ (GeV/c)} \]

\[\text{Generated } p_T^{e\Xi} \text{ (GeV/c)} \]
HF baryon enhance mechanism

- **PYTHIA 8 with Colour Reconnection (CR) tunes** [JHEP 08 (2015) 003]
 - Colour reconnection mode with QCD SU(3) algebra + string-length minimization
 - Junction connection topologies enhance baryon formation
 - Mode parameters: string reconnection, connection causality of dipoles, time dilation

- **No CR**
 - Partons created in different MPIs do not interact each other

- **Old CR**
 - CR allowed between partons from different MPIs to minimize the string length
 - Used in Monash tune

- **New CR**
 - Minimization of string length over all possible configurations
 - Enhancement of hadrons
 - Used in CR mode X tunes

- **Diagram**
 - Type II: junction-style reconnection
- **PYTHIA 8 with Colour Reconnection (CR) tunes** [JHEP 08 (2015) 003]
 - Colour reconnection mode with QCD SU(3) algebra + string-length minimization
 - Junction connection topologies enhance baryon formation
 - Mode parameters: string reconnection, connection causality of dipoles, time dilation

- **Statistical Hadronisation Model (SHM) + additional baryon states** [PLB 795 (2019) 117-121]
 - PDG: 5 Λ_c (I=0), 3 Σ_c (I=1), 8 Ξ_c (I=1/2), 2 Ω_c (I=0)
 - RQM (Relativistic Quark Model): Add 18 Λ_c, 42 Σ_c, 62 Ξ_c, 34 Ω_c [PRD 84 (2011) 014025]

<table>
<thead>
<tr>
<th>$n_i \cdot 10^{-4}$ fm$^{-3}$</th>
<th>D^0</th>
<th>D^+</th>
<th>D^{*+}</th>
<th>D_s^+</th>
<th>Λ^+_c</th>
<th>$\Xi^{+,0}_c$</th>
<th>Ω^0_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDG(170)</td>
<td>1.161</td>
<td>0.5098</td>
<td>0.5010</td>
<td>0.3165</td>
<td>0.3310</td>
<td>0.0874</td>
<td>0.0064</td>
</tr>
<tr>
<td>PDG(160)</td>
<td>0.4996</td>
<td>0.2223</td>
<td>0.2113</td>
<td>0.1311</td>
<td>0.1201</td>
<td>0.0304</td>
<td>0.0021</td>
</tr>
<tr>
<td>RQM(170)</td>
<td>1.161</td>
<td>0.5098</td>
<td>0.5010</td>
<td>0.3165</td>
<td>0.6613</td>
<td>0.1173</td>
<td>0.0144</td>
</tr>
<tr>
<td>RQM(160)</td>
<td>0.4996</td>
<td>0.2223</td>
<td>0.2113</td>
<td>0.1311</td>
<td>0.2203</td>
<td>0.0391</td>
<td>0.0044</td>
</tr>
</tbody>
</table>
HF baryon enhance mechanism

- **PYTHIA 8 with Colour Reconnection (CR) tunes** [JHEP 08 (2015) 003]
 - Colour reconnection mode with QCD SU(3) algebra + string-length minimization
 - Junction connection topologies enhance baryon formation
 - Mode parameters: string reconnection, connection causality of dipoles, time dilation

- **Statistical Hadronisation Model (SHM) + additional baryon states** [PLB 795 (2019) 117-121]
 - PDG: 5 Λ_c ($I=0$), 3 Σ_c ($I=1$), 8 Ξ_c ($I=1/2$), 2 Ω_c ($I=0$)
 - **RQM (Relativistic Quark Model)**: Add 18 Λ_c, 42 Σ_c, 62 Ξ_c, 34 Ω_c [PRD 84 (2011) 014025]

- **Quark Recombination Mechanism (QCM)** [EPJC 78 no.4, (2018) 344]
 - Combination of charm quarks with co-moving light quarks
HF baryon enhance mechanism

- **PYTHIA 8 with Colour Reconnection (CR) tunes** JHEP 08 (2015) 003
 - Colour reconnection mode with QCD SU(3) algebra + string-length minimization
 - Junction connection topologies enhance baryon formation
 - Mode parameters: string reconnection, connection causality of dipoles, time dilation

- **Statistical Hadronisation Model (SHM) + additional baryon states** PLB 795 (2019) 117-121
 - PDG: 5 Λ_c ($I=0$), 3 Σ_c ($I=1$), 8 Ξ_c ($I=1/2$), 2 Ω_c ($I=0$)
 - RQM (Relativistic Quark Model): Add 18 Λ_c, 42 Σ_c, 62 Ξ_c, 34 Ω_c PRD 84 (2011) 014025

- **Quark Recombination Mechanism (QCM)** EPJC 78 no.4, (2018) 344
 - Combination of charm quarks with co-moving light quarks

- **Catania model** arXiv:2012.12001
 - Coalescence process of heavy quarks with light quark based on the Wigner formalism + fragmentation process
 - Blast wave parametrization for light quarks spectra, FONLL calculation for heavy quarks spectra
<table>
<thead>
<tr>
<th>Model</th>
<th>HQ production</th>
<th>Medium modelling</th>
<th>Quark-medium interaction</th>
<th>HQ hadronization</th>
<th>Tuning of medium coupling</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAMPS et.</td>
<td>MC@NLO</td>
<td>3d+1 expansion parton cascade</td>
<td>Transport with Boltzmann rad. + coll.</td>
<td>Frag.</td>
<td>RHIC (then scaled by dN/ dη)</td>
<td>https://arxiv.org/abs/1408.2964</td>
</tr>
<tr>
<td>Catania</td>
<td>FONLL EPS09 (NLO) PDF shadowing</td>
<td>2d+1 expansion parton cascade</td>
<td>Transport with Langevin coll. only</td>
<td>Frag. + Rec. (different from TAMU?)</td>
<td>Assume 1-QCD U potential</td>
<td>https://arxiv.org/pdf/1712.00730</td>
</tr>
<tr>
<td>LIDO</td>
<td>FONLL EPS09 (NLO) PDF shadowing</td>
<td>2d+1 rel. fluido-dynamics</td>
<td>Transport with Langevin + empirical transport coefficients to capture the non-perturbative part. (Boltzmann)</td>
<td>Frag. + Rec.</td>
<td>Coefficients fixed with Bayesian analysis to LHC D and B results</td>
<td>https://arxiv.org/pdf/1806.08848</td>
</tr>
<tr>
<td>Model</td>
<td>HQ production</td>
<td>Medium modelling</td>
<td>Quark-medium interaction</td>
<td>HQ hadronization</td>
<td>Tuning of medium coupling</td>
<td>References</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------</td>
<td>------------------------------</td>
<td>---</td>
<td>------------------------</td>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>PHSD</td>
<td>Pythia + string melting</td>
<td>Microscopic covariant transport Dynamical Quasiparticle Model</td>
<td>Local covariant transition rates</td>
<td></td>
<td></td>
<td>https://arxiv.org/pdf/1908.00451v1</td>
</tr>
<tr>
<td>MC@ sHQ+ EPOS2</td>
<td>FONLL EPS09 (NLO) PDF shadowing</td>
<td>3d+1 expansion (EPOS model)</td>
<td>Transport with Boltzmann coll. (+rad when mentioned)</td>
<td>Frag. + Rec.</td>
<td>QGP transport coefficients fixed at LHC, adapted for RHIC</td>
<td>https://arxiv.org/abs/1305.6544</td>
</tr>
<tr>
<td>WHDG</td>
<td>FONLL no PDF shadowing</td>
<td>Glauber model nuclear overlap No fluido-dyn evol. rad. + coll.</td>
<td>Frag.</td>
<td></td>
<td>RHIC (then scaled by dN/dn)</td>
<td></td>
</tr>
<tr>
<td>Vitev et al.</td>
<td>Non-zero mass VFNS no PDF shadowing</td>
<td>Glauber model nuclear overlap Ideal fluido-dyn Bjorken expansion rad. + coll. In medium meson dissociation</td>
<td>Frag.</td>
<td></td>
<td>RHIC (then scaled by dN/dn)</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Monash</td>
<td>Mode 0</td>
<td>Mode 2</td>
<td>Mode 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>StringPT:sigma</td>
<td>0.335</td>
<td>0.335</td>
<td>0.335</td>
<td>0.335</td>
<td></td>
<td></td>
</tr>
<tr>
<td>StringZ:aLund</td>
<td>0.68</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>StringZ:bLund</td>
<td>0.98</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>StringFlav:probQQtoQ</td>
<td>0.081</td>
<td>0.078</td>
<td>0.078</td>
<td>0.078</td>
<td></td>
<td></td>
</tr>
<tr>
<td>StringFlav:ProbStoUD</td>
<td>0.217</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5,</td>
<td>0.0275,</td>
<td>0.0275,</td>
<td>0.0275,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.7,</td>
<td>0.0275,</td>
<td>0.0275,</td>
<td>0.0275,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.9,</td>
<td>0.0275,</td>
<td>0.0275,</td>
<td>0.0275,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>0.0275</td>
<td>0.0275</td>
<td>0.0275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>StringFlav:probQQ1toQQ0join</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MultiPartonInteractions:pT0Ref</td>
<td>2.28</td>
<td>2.12</td>
<td>2.15</td>
<td>2.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BeamRemnants:remnantMode</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BeamRemnants:saturation</td>
<td>-</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ColourReconnection:mode</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ColourReconnection:allowDoubleJunRem</td>
<td>on</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ColourReconnection:m0</td>
<td>-</td>
<td>2.9</td>
<td>0.3</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ColourReconnection:allowJunctions</td>
<td>-</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ColourReconnection:junctionCorrection</td>
<td>-</td>
<td>1.43</td>
<td>1.20</td>
<td>1.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ColourReconnection:timeDilationMode</td>
<td>-</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ColourReconnection:timeDilationPar</td>
<td>-</td>
<td>-</td>
<td>0.18</td>
<td>0.073</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>