

Higher-Order Cumulants of Net-Proton Multiplicity Distributions in √s_{NN} = 200 GeV Zr+Zr and Ru+Ru Collisions by the STAR Experiment

Lawrence Berkeley National Laboratory
Ho-San Ko
for the STAR Collaboration

Supported by

Outline

- Introduction & motivation
- Analysis information
 - \circ $\sqrt{s_{NN}}$ = 200 GeV isobaric collisions (mixed Ru and Zr data)
- Corrections
- Net-proton cumulants & cumulant ratios
- Summary

QCD phase diagram

<<arXiv:2001.02852>>

QCD calculation

- Cross over at $\mu_p \sim 0$ [1] and T ~ 150 MeV [2 ~ 4]
- A critical point followed by first-order phase transition at high μ_R
- Search for the possible signature of critical point by scanning T vs μ_R :
 - By varying collision energy in heavy-ion collisions

[1] Nature 443, 675 (2006)

[2] JHEP 06, 088 (2009) [3] Phys. Rev. D 85, 054503 (2012) [4] Science 332, 1525 (2011)

Fluctuation of conserved quantities

• Cumulants of conserved quantities (B, Q, S) are related to correlation length of the system

$$\delta N = N - \langle N \rangle \ C_1 = \langle N \rangle, C_2 = \langle (\delta N)^2 \rangle$$

$$C_3 = \langle (\delta N)^3 \rangle, C_4 = \langle (\delta N)^4 \rangle - 3 \langle (\delta N)^2 \rangle^2$$

$$C_2 = \sigma^2, \ S = C_3/(C_2)^{3/2}, \kappa = C_4/(C_2)^2$$

• The higher the order, the more sensitive

$$C_2 \sim \xi^2, C_3 \sim \xi^{4.5}, C_4 \sim \xi^7$$

Phys. Rev. Lett. 107, 052301 (2011)

The cumulant ratios can be directly compared to theoretical calculations

$$\chi_q^{(n)} = \frac{\partial^n (p/T^4)}{\partial (\mu_O/T)^2} = \frac{1}{VT^3} \times C_q^n$$

Net-proton number is used as a proxy to net-B number

Fourth-order fluctuations for critical point search

<< Phys. Rev. Lett. 126, 92301 (2021)>>

 4th order: predicts a non-monotonic energy dependence due to contribution from QCD critical point

Isobaric (Zr+Zr & Ru+Ru) collision data

 C_4/C_2 of net-proton for Au+Au collision at $\sqrt{s_{NN}} = 200 \text{ GeV}$

<< Phys. Rev. C 104, 024902 (2021)>>

- The number of nucleons per nucleus:
 - o Proton: A = 1
 - Isobar (Ru or Zr): A = 96
 - Au: A = 197
- Expect the same multiplicity dependence in different collision systems at the same collision energy
- Large statistics: 2.3B Zr+Zr and 2.2B Ru+Ru taken at STAR in 2018

Solenoid Tracker at RHIC (STAR)

- Time Projection Chamber (TPC): Vertexing & particle identification
- Time Of Flight (TOF) detector:
 Ensures proton purity at
 0.8 < p_⊤ < 2.0 GeV/c

Ho-San Ko | LBNL | ATHIC2021

charge X momentum [GeV/c]

 $\times 10^3$

300

250

200

150

100

50

10⁵
10⁴
10³

Net-proton distributions

Before detector efficiency correction z-axis normalized

Moments analysis corrections

- Detector efficiency correction [1~3]
 - Binomial detector efficiency correction
 - Efficiency corrected to each particle track
 - TOF matching + TPC tracking efficiency corrections
- Statistical uncertainty calculated based on Delta theorem [4]
- Centrality bin width correction [5]
 - Corrects finite bin width effect

```
[1] Phys. Rev. C 91, 034907 (2015)
```

Centrality: a measure of geometric overlap of two colliding nuclei → determined by charged-particle multiplicity

Measured

Detector response

Actual distribution

$$p(n) = \sum_{N} Binomial(n; N, \epsilon) \times P(N)$$
 "N" detector bins with efficiency ϵ

 n_i : number of events in multiplicity bin i

$$C_n^{corr} = \frac{\sum_i n_i C_{n,i}}{\sum_i n_i} = \sum_i \omega_i C_{n,i}$$

Charged-particle multiplicity: number of charged particles in $|\eta| < 1$ excluding (anti-)protons per event

^[2] Phys. Rev. C 95, 064912 (2017)

^[3] Phys. Rev. C 99, 044917 (2019)

^[4] J. Phys. G: Nucl. Part. Phys. 39 025008 (2012)

^[5] I. Phys. G: Nucl. Part. Phys. 40 105104 (2013)

TOF matching efficiency & TPC tracking efficiency maps

- TOF matching efficiency: Number of protons identified by TPC vs TPC+TOF
- TPC tracking efficiency: Number of protons identified by TPC vs generated both in MC simulation with realistic geometry (embedding)
- Do interpolation between bins to overcome the low statistics of the MC simulation events

Net-proton cumulants and ratios

UrQMD centrality determined in a similar way to the data: measure charged-pion & charged-kaon multiplicity

<N_{part}>: Average Number of participating nucleons per event

C₄/C₇ (4th-order) net-proton cumulant ratio comparison

p+p: <<CPOD2021 R. Nishitani>> Au+Au: <<Phys. Rev. C 104, 024902 (2021)>> LOCD: <<Phys. Rev. D 101, 074502 (2020) >>

- 1. For p+p collision, the entire centrality classes are merged to one and shown with light blue
 - a. p+p collision's multiplicity dependence is the opposite from the heavy-ion collision's
- Isobaric collisions (Ru+Ru, Zr+Zr combined) fit into the p+p (averaged) and Au+Au collision results at √s_{NN} = 200 GeV
- 3. C₄/C₂ lowers as the charged particle multiplicity → consistent with the lattice QCD result at high multiplicity region: approaching thermalized medium in the most central collisions

Summary and outlook

- 1. Net-proton cumulants and their ratios from $\sqrt{s_{NN}}$ = 200 GeV isobaric collisions (mixed Ru and Zr data)
- 2. Net-proton cumulants and their ratios of the isobaric collision compared with the Au+Au collision results at $\sqrt{s_{NN}}$ = 200 GeV
 - a. Systematic shift in cumulant ratios. However, overall trends are consistent
 - b. p+p collisions show the opposite multiplicity dependency from the heavy-ion collisions
 - c. C_4/C_2 from the different collision systems fit one another in collision centrality dependence
- 3. Net-proton cumulant ratios compared with HRG, UrQMD models, and lattice QCD
 - a. UrQMD results qualitatively show the same trends as the data
 - b. C4/C2 consistent with the lattice QCD calculation result at high multiplicity
 - i. approaching thermalized medium in the most central collisions
- 4. Working on higher order cumulants