

Paolo Giubellino ATHIC2021, 5–9 Nov 2021, Inha Univ. Incheon, South Korea

On the trail of the secrets of the universe

Nuclear Physics

FAIR: Facility for Antiproton and Ion Research

GSI Discoveries

GSI Discoveries

- precise like a scalpel
- extremely efficient in destroying the tumor cells
- spares the healthy tissue

Forefront Technologies

Technological advancements in high-performance & scientific computing, Big Data, Green IT

A Talent Factory

- A unique capability to attract and create talent and know-how.
- Training and education of the next generation of scientists, engineers and computing experts from all over the world:
 - Graduate Schools with currently more than 300 doctoral students from all over the world
 - International Postdoc Programs
 - Multiple training programs for students
 - Bilateral Agreements with several countries for training and education of young scientists and engineers

GSI and **FAIR** – The Facility

FAIR: International Cooperation

- 9 international FAIR Shareholders
- 1 Associated Partner (United Kingdom)
- 1 Aspirant Partner Czech Republic (Since 2018)

Participation of 3.000 scientists from all continents

FAIR facility - worldwide production and delivery of accelerator components and

SIS100: Dipole-Magnet

Construction Dimensions

2 Mio. m³

Ground

will be moved

600.000 m³

Concrete

will be installed

65.000 t

Steel

will be deployed

Status as of Oct. 2021: more than 50 % executed

Correspond to 5,000 single-family houses

Correspond to 8-times the football stadium of Frankfurt

Correspond to 9 Eiffel Towers

FAIR Construction, 2021

Civil construction progressing well, concrete works of underground ringtunnel completed in May 2021. Manufacturing of accelerator and experiment components by all partner countries ongoing worldwide. Many accelerator and experiment components are delivered and tested ready for installation

FAIR

To find answers to fundamental questions about the Universe: The Universe in the lab...

Neutron star mergers and their role for the production of heavy elements

Gravitational wave signal

Electromagnetic afterglow - "Kilonova-lightcurve" - reveals that heavy elements, e.g. Au and Pt, were produced (r-process), as predicted by GSI theorists.

Neutron Stars and Mergers vs HI collisions

Neutron stars

Temperature T < 10 MeV

Density $\rho < 10 \rho_0$

Lifetime T ~ infinity

Neutron star merger

Temperature T < 50 MeV

Density $\rho < 2 - 6 \rho_0$

Reaction time (GW170817) T ~ 10 ms

Heavy ion collisions at SIS100

Temperature T < 120 MeV

Density $\rho < 8\rho_0$

Reaction time $t \sim 10^{-23} \text{ s}$

Compressed Baryonic Matter

... with direct applications

High-performance and scientific computing, big data, green IT

Space radiation protection, unique facility fo simulation, collaboration with ESA

Development of nuclear clock: Promising candidate thorium-229

Novel applications for tumor and non-tumor diseases

The FAIR science: four pillars

atomic physics, biophysics, plasma physics, material research

nuclear- and quark-matter

nuclear structure and nuclear astrophysics

hadron structure and dynamics

APPA

- Atomic, Plasma Physics and Applications
 - About 800 members
 - Wide field of science
 - basic research into material, biological and medical applications and space research

Atomic Physics

SPARC: ~400 members from 26 countries

Plasma Physics

HED: ~300 members from 16 countries

Materials Research and Biophysics

BIOMAT: ~100 members from 12 countries

C.B.M.

Temperature T [MeV

- Compressed Baryonic Matter Experiments
 - About 400 members

NUSTAR

- Origin of Elements in the Universe

PANDA - AntiProton Annihilation at Darmstadt

Bound States of Strong Interaction

Spectroscopy

- New narrow XYZ: Search for partner states
- Production of exoticQCD states:Glueballs & hybrids

Strangeness

- Hyperon spectroscopy: excited states largely unknown
- Hyperon polarisation: accessible by weak, parity violating decay

Nucleon Structure

- Generalized parton distributions:
 Orbital angular momentum
- Drell Yan: Transverse structure, valence anti-quarks
- Time-like form factors:
 Low and high E, e and
 μ pairs

Nuclear Hadron Physics

- Hypernuclear physics:
 - Double ∧ hypernuclei
 - Hyperon interaction

NUPECC Long Range Plan

The combination of PANDA's discovery potential for new states, coupled with the ability to perform high-precision systematic measurements is not realised at any other facility or experiment in the world.

Schedule for FAIR Science

- While working towards start of FAIR, staged approach to FAIR science and progressive commissioning of accelerators and detectors:
 - FAIR phase 0 : started in 2019, to continue with annual runs till start of FAIR
 - Until 2024 a block of 3 months beamtime per year. The scheme for 2025/2026 will be developed depending on commissioning progress, to ensure that the activities will be compatible
 - Installation of infrastructure items of the experiments in the new experimental halls, DURING the installation of technical infrastructure, 1 or 2 years before final delivery of the completed buildings
 - FAIR day 1 configurations/ phase 1 experiments with FAIR accelerators progressively approaching design parameters

Full FAIR operation

Early science program FAIR Phase-0

- Since 2019, annual runs of
 ~110 days until FAIR operation
- Supported by FAIR partners, so far: Finland, France, Germany, Romania, Sweden and the UK

Science while realizing FAIR

- strong response by scientific community, over 1 thousand scientists involved, demand largely exceeding the available beamtime, confirming the attractiveness of the experimental opportunities
- 1/3 of the 2020 experiments could not be performed, mostly because of Covid-19, and are being performed in 2021/22
- the 2021 beamtime has been performed as planned

Example: PRIOR II, Proton Microscope

- Proton radiography
- Upgrade with new PRIOR magnets complete
- Commissioning in February 2021
- Achieved resolutions
 - spatial 20 µm
 - in time 10 ns

PRIOR-I (2014)

PRIOR-II (2021)

Ground-breaking experiment opening way for nuclear astrophysics experiments at FAIR with ESR FAIR ESS

- E127: Proton-capture rates for nuclear astrophysics: First reaction study on stored radiobeam at low energies
- Study of radioactive ¹¹⁸Te (6 days half-life)
 - production, storage, accumulation and deceleration in FRS-ESR
 - proton-capture measurements realized at 7 MeV/u and 6 MeV/u
- New background-free detection method demonstrated

Jan Glorius et al. **I**

Biophysics FAIR Phase-results examples

FLASH – new method for ultrafast, high dose treatment of cancer with carbon ion beams

Hybrid γ-PET detectors for RIB

BARB (ERC Grant) – Cancer Therapy with radioactive isotopes for simultaneous treatment and PET

~270 MeV/u, ~120 mm range in water

Research on COVID-19 vaccines production with heavy ion beams in cooperation with HZI-Braunschweig

www.gsi.de/BARB

Latest news: Combination of heavy ion beam therapy with mRNA-Vaccine in cancer therapy (Cooperation with TRON)

FAIR Phase-0 results on Material Science, example

Research Program

- New sensor for SARS-CoV-2 and other viruses based on GSI/FAIR nanotechnology
 - better and faster virus detection with single nanopore membranes
 - detection of SARS-CoV-2 in saliva, serum or wastewater without sample pretreatment
 - same sensitivity as a qPCR test, result in 2 hours
 - sensor distinguishes infectious from non-infectious corona viruses

Highly sensitive nanopore by lon-track nanotechnology

High selectivity by coating nanopore with selective aptamers that bind specific virus (tested with SARS-CoV-2 and adenovirus)

Transport measurements through coated nanopore indicate infectious state of tested virus

APTAMER-NANOPORE VIRUS DETECTION
SENSOR

APTAMER-NANOPORE VIRUS DETECTION
SENSOR

APTAMER ALLOW TO DISTINGUISH INFECTIOUS VIRUS
FROM NON-INFECTIOUS VIRUS

APTAMER ALLOW TO DISTINGUISH INFECTIOUS VIRUS
FROM NON-INFECTIOUS VIRUS

APTAMER ALLOW TO DISTINGUISH INFECTIOUS VI

CBM in Phase-0: mCBM

- During the last campaign, mCBM was successfully tested with the highest collision rates available in FAIR Phase-0
- Customised chain of electronics to process and transfer the data of all subsystems to the final data processing proven its capability

Backup

HADES

Upgrades for the FAIR Phase-0 beam time in 2022

Improved physics performance through instrumentation of the very forward hemisphere using FAIR technology.

Dedicated to the joint HADES-PANDA physics program on electromagnetic properties of hyperons.

TransFAIR, Jülich

 APD read-out Enhances

trigger pa.

Forward RPC

LIP Coimbra

- Based on R&D for neuLANI
- TRB3 read-out

STS2

Jagiellonian Univ.

- PANDA straw technology
- PANDA PASTTREC FEE chip

- PANDA straw technology
- PANDA PASTTREC FEE chip

TO

GSI, TU Darmstadt

- LGAD technology
- In-beam detector

APPA - Atomic Physics, Plasma Physics, and Applied Sciences

strong field research

... probing of fundamental laws of physics

warm dense matter

... states of matter common in astrophysical objects

radiation hardness

... mechanical and electrical degradation of materials

space travel

... cosmic radiation risk and shielding

FAIR - The Universe in the Laboratory

How Matter behaves at How Matter behaves at extreme Densities and extreme electromagnetic Field Strengths **Temperatures FAIR/APPA** FAIR/ CBM-HADES

How the chemical elements evolve from Neutron-Star Matter

FAIR/ NUSTAR

S. Rosswog

How the Protons and Neutrons are formed

0.05

FAIR/ PANDA

How Nature makes the building blocks of life

rate insufficiently known at astrophysically energies

Alpha fusion on 12C is the stellar reaction of paramount importance,

W.A. Fowler, Nobel lecture 1983

Experiment in inverse kinematics (Coulomb dissociation) requires high energies -> GSI/FAIR

Questions about the Universe

Matter in the interior of the Earth and of large planets

 The interior of our Earth is most likely composed of liquid iron. What is exactly the melting curve for iron?

 Does hydrogen form a metallic state under the extreme conditions of pressure and temperature on and in Jupiter? How does hydrogene separate from He?

 Are there diamond layers in Uranus and Neptune? What role does the highdensity metallic state of water play for the magnetic field in Uranus and Neptune?

Studying cosmic radiation induced processes

irradiation chamber and spectrometer