System Size and Energy Dependence of Resonance production

Jihye Song
Pusan National University
5 November 2021
Outline

• Motivation

• Resonances

• Particle ratios
 - system size dependence
 - energy dependence
 - resonances to long-lived particle ratios

• Nuclear modification factor
 - centrality, energy, particle species

• Spin alignment: ρ_{00} vs. ρ_T, $\langle N_{\text{part}} \rangle$, energy
Motivation

1. Probing the properties of hadronic phase

- Resonances have different short lifetimes similar to Hadronic phase
 - allows the study of properties of hadronic phase in terms of regeneration and re-scattering effects

2. In-medium energy loss

- Hard partons propagating through hot and dense medium are predicted to lose energy via multiple scattering
 - suppression of high-p_T production

$$R_{AA} = \frac{1}{\langle N_{\text{coll}} \rangle} \frac{(1/N_{\text{evt}}^{AA})d^2N^{AA}/dydP_T}{(1/N_{\text{evt}}^{pp})d^2N^{pp}/dydP_T}$$

$$R_{AA} = 1 \rightarrow \text{no modification}$$

$$R_{AA} \neq 1 \rightarrow \text{medium effects}$$

Resonance decay	Regeneration	Re-scattering
$\rho(1.3) < K^*(4.2) < \Sigma^*(5.5) < \Lambda^*(12.6) < \Xi^*(21.7) < \phi(46.4)$

Lifetime (fm/c)
Motivation

3. Resonance production contributes spin alignment in HI collisions

![Image of resonance production and spin alignment]

ρ_{00}: Element of spin density matrix

$\frac{dN}{d(cos\theta^*)} \propto (1 - \rho_{00}) + (3\rho_{00} - 1)cos^2\theta^*$

- Large angular momentum [1] and intense magnetic field [2] is expected in initial stage of heavy-ion collisions
- Spin alignment of vector meson could occur

4. Strangeness production
5. Chiral symmetry restoration

Jihye Song

Resonances (particles & decay modes)

Meson

<table>
<thead>
<tr>
<th>Meson</th>
<th>quark content</th>
<th>Decay modes</th>
<th>B.R.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho(770)^0)</td>
<td>(u\bar{u}+d\bar{d}) \sqrt{2}</td>
<td>(\pi^+\pi^-)</td>
<td>100</td>
</tr>
<tr>
<td>(K^*(892)^0)</td>
<td>d\bar{s}</td>
<td>K^+\pi^-</td>
<td>66.6</td>
</tr>
<tr>
<td>(K^*(892)^\pm)</td>
<td>u\bar{d}</td>
<td>K^0_s\pi^+</td>
<td>33.3</td>
</tr>
<tr>
<td>(f_0(980), f_2(1270))</td>
<td>unknown</td>
<td>(\pi^+\pi^-)</td>
<td>46(84)</td>
</tr>
<tr>
<td>(K^{*0,2}(1430)^0)</td>
<td>d\bar{s}</td>
<td>K^+\pi^-</td>
<td>93(49.4)</td>
</tr>
<tr>
<td>(\phi(1020))</td>
<td>s\bar{s}</td>
<td>K^+K^-</td>
<td>48.9</td>
</tr>
</tbody>
</table>

Baryon

<table>
<thead>
<tr>
<th>Baryon</th>
<th>quark content</th>
<th>Decay modes</th>
<th>B.R.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Sigma(1385)^+)</td>
<td>uus</td>
<td>(\Lambda\pi^+)</td>
<td>87</td>
</tr>
<tr>
<td>(\Sigma(1385)^-)</td>
<td>dds</td>
<td>(\Lambda\pi^-)</td>
<td>87</td>
</tr>
<tr>
<td>(\Lambda(1520))</td>
<td>uds</td>
<td>pK^-</td>
<td>22.5</td>
</tr>
<tr>
<td>(\Xi(1530)^0)</td>
<td>uss</td>
<td>(\Xi^-\pi^+)</td>
<td>66.7</td>
</tr>
<tr>
<td>(\Xi(1820)^\pm,0)</td>
<td>dss (uss)</td>
<td>(\Lambda K^\mp) (\Lambda K^0_s)</td>
<td>unknown</td>
</tr>
<tr>
<td>(\Omega(2012)^\mp)</td>
<td>sss</td>
<td>(\Xi^\mp K^0_s)</td>
<td>unknown</td>
</tr>
</tbody>
</table>

Lifetime (fm/c): \(\rho(1.3) < K^*(4.2) < \Sigma^*(5.0-5.5) < \Lambda^*(12.6) < \Xi^*(21.7) < \phi(46.2)\)

Jihye Song
Suppression of K^* is observed in different collision systems from various experiments (NA49, NA61/SHINE, STAR) - more suppression for larger collision systems.
Suppression of K^* w.r.t. the statistical Hadron Resonance Gas Models (HGM) is observed for heavier system.

Suppression of $\Lambda(1520)$ while no suppression for ϕ w.r.t. the HGM from NA49 measurement.
Particle ratios: energy dep.

K^*/K and ϕ/K ratios have been measured at different energies in STAR and ALICE - no clear energy dependence from RHIC to LHC.
• Flat behavior in wide range of energy for small collision systems

• Yield ratios for central Au+Au and Pb-Pb collisions are significantly lower than the pp collisions

PHYSICAL REVIEW C 102, 024912 (2020)
Flat behavior in wide range of energy (~10-10^4 GeV)

Increase for low energies due to canonical suppression
- reproduced by statistical model calculation with strangeness correlation radius parameter $R_c = 2.2$ fm
Particle ratios

- K^0/K
 - decrease with increasing multiplicity (system size)
 - larger in central Cu-Cu than central Au-Au
 - higher in pp collisions than in central Au-Au and Pb-Pb

- ϕ/K
 - constant as a function of multiplicity
 - slightly larger in Au-Au and Cu-Cu than Pb-Pb
 - independent of collision energy and system from RHIC to LHC energies

Jihye Song
Resonance to long-lived particle ratios

- No multiplicity dependence of ρ^0/π at RHIC in p+p, d+Au and Au+Au collisions
- ρ^0/π is suppressed at LHC with increasing multiplicity
 - qualitatively described by EPOS with UrQMD

Lifetime (fm/c): $\rho(1.3)$

Jihye Song

Resonance to long-lived particle ratios

• Multiplicity dependence of K^{*0}/K at RHIC and LHC
 - smooth trend:
 $p+p \rightarrow d+Au(p+Pb) \rightarrow Au+Au(Pb+Pb)$

Lifetime(fm/c): $p(1.3) < K^{*0}(4.2)$
Resonance to long-lived particle ratios

- No modification of Σ^*/Λ at d+Au, p+Pb and Au+Au
- while suppression of Σ^*/Λ is observed in Pb+Pb
 - not described by EPOS3

Lifetime (fm/c): $\rho(1.3) < K^0(4.2) < \Sigma^*(5.5)$
Resonance to long-lived particle ratios

- Suppression of Λ^*/Λ at Au+Au and Pb+Pb
- A+A: qualitatively described by EPOS with UrQMD

Lifetime (fm/c): $p(1.3) < K^*(4.2) < \Sigma^*(5.5) < \Lambda^*(12.6)$
Resonance to long-lived particle ratios

- Ξ^*/Ξ and ϕ/K: no significant centrality dependence across the different collision systems

Lifetime (fm/c): $\rho(1.3) < K^0*(4.2) < \Sigma^*(5.5) < \Lambda^*(12.6) < \Xi^*(21.7) < \phi(46.2)$

Jihye Song
Resonance to long-lived particle ratios

ALICE Preliminary

\(p^0/\pi, K^*/K, \Sigma^*/\Lambda \) and \(\Lambda^*/\Lambda \) in Pb-Pb collisions indicates dominance of re-scattering over regeneration for short lived resonances

\(\Sigma^*/\Lambda \) and \(\Lambda^*/\Lambda \): flat in small systems and no energy dependence from RHIC to LHC

\(\Xi^*/\Xi \) and \(\phi/K \): no significant centrality dependence

Summary

Lifetime(fm/c): \(\rho(1.3) < K^*(4.2) < \Sigma^*(5.5) < \Lambda^*(12.6) < \Xi^*(21.7) < \phi(46.2) \)

Jihye Song
Nuclear modification factor (R_{AA})

R_{AA} helps in understanding the evolution of parton energy loss in the medium

Centrality dependence

\[
R_{AA}(p_T) = \frac{\text{Yield}_{AA}(p_T)}{\text{Yield}_{pp}(p_T) \times \langle N_{\text{coll}} \rangle}
\]

- $p_T < 5 \text{ GeV/c}$
 - R_{AA} of K^* is lower than ϕ
 - dominance of re-scattering effect

- $p_T > 6 \text{ GeV/c}$
 - R_{AA} of K^* and ϕ are comparable within uncertainties
 - suppression due to parton energy loss
 - pronounced suppression in the most central collisions
Nuclear modification factor (R_{AA})

Center-of-mass energy dependence

- R_{AA} values for $\sqrt{s_{NN}} = 5.02$ TeV are compared to the values at $\sqrt{s_{NN}} = 2.76$ TeV
- No significant differences for both the K^0 and ϕ are observed
- measurement of other mesonic and baryonic resonances ($\rho(770)^0$, $\Delta(1232)^{++}$, $\Sigma(1385)$, $\Lambda(1520)$) are required to further support
Nuclear modification factor (R_{AA}, R_{pA})

Hadron species dependence

Intermediate-p_T ($2 < p_T < 8$ GeV/c)
- baryon-meson splitting
- hint of **mass ordering** among mesons
- higher R_{AA} values for proton (might be due to baryon-meson effect)

High-p_T (>8 GeV/c)
- similar **suppression** for different light flavor hadrons
- No flavor (u,d,s) dependence

Jihye Song
Spin alignment: ρ_{00} vs. ρ_T

- RHIC
 - $\rho_{00} < \frac{1}{3}$ for K^* and consistent with $\frac{1}{3}$ for ϕ

- LHC
 - Spin alignment ($\rho_{00} < \frac{1}{3}$) of vector meson in heavy-ion collisions at low p_T
 - No spin alignment for vector meson in pp collisions
 - No spin alignment for spin 0 hadron (K^0_s)

Jihye Song
Spin alignment: ρ_{00} vs. $\langle N_{\text{part}} \rangle$

- Spin alignment ($\rho_{00} < 1/3$) of vector meson in heavy-ion collisions at low p_T
- $\rho_{00} \sim 1/3$ at high-p_T
- $\rho_{00} \sim 1/3$ in central and peripheral collisions
Spin alignment: ρ_{00} vs. energy

- $K^*0\rho_{00}$
 - low-p_T and in mid central collisions is smaller than 1/3
 - no beam-energy dependence is observed

- $\phi\rho_{00}$
 - larger than 1/3 at RHIC energies (~ 3σ significance at 200 GeV)
 - smaller than 1/3 at LHC energy (~ 2σ significance)

$\sqrt{s_{NN}} = 11.5 - 200$ GeV/c
Conclusion

• Hadronic resonances are valuable probes to study the properties of hadronic phase, spin alignment and in medium energy loss (+ strangeness production, chiral symmetry restoration, etc.)

• Suppression of short-lived resonances in large collision systems
 - dominance of re-scattering over regeneration
 - no suppression observed for the longer-lived resonances

• High-p_T particle suppression is observed for Pb-Pb
 - No flavor(u/d/s) dependencies (ground state particles & resonances)

• Spin alignment ($\rho_{00} < 1/3$) of vector meson is found in heavy-ion collisions at low p_T in mid-central Au-Au and Pb-Pb collisions

Jihye Song
electric part of vector ϕ field to spin alignment

$$C_s^{(y)} \equiv g_\phi^4 \left\langle \tilde{E}_{\phi,z}^2 + \tilde{E}_{\phi,x}^2 \right\rangle.$$