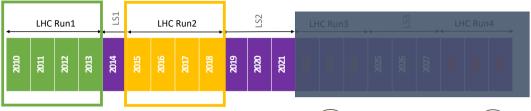
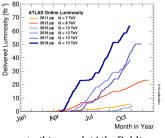
Charged particle yield evolution in particle multiplicity in pp, p–Pb and Pb–Pb

Beomkyu Kim Sungkyunkwan University

5th November, 2021 ATHIC2021, Inha University

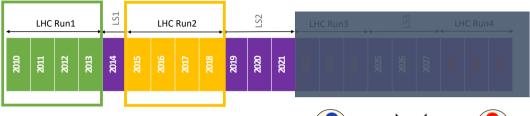

Study interplay between soft and hard QCD

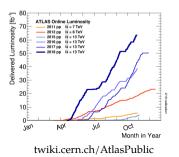
AA collisions	pp collisions
• Direct relation to the initial ϵ of QGP $\epsilon = \frac{dE_{\rm T}/dy}{\tau_0 \pi R^2} \approx \frac{3}{2} \langle m_{\rm T} \rangle \frac{dN_{\rm ch}/d\eta}{\tau_0 \pi R^2} > 1 \text{GeV/fm}^3$	 Reference data for nuclear effect Study MPI in high N_{ch} collisions


p–Pb collisions

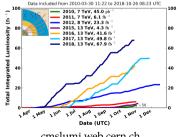
- Discriminate between FSR in AA and ISR of nuclei themselves
- ► QGP-like effects even in pp and p–Pb collisions at LHC energies proton (A=1) — p–Pb — Xe (A=129) — Pb (A=208)
- System size and $\langle dN_{ch}/d\eta \rangle \rightarrow$ starting of the story

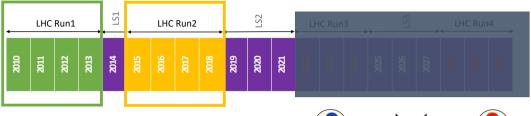
PROTON-PROTON COLLISIONS IN LHC Run1 and Run2



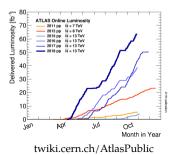


twiki.cern.ch/AtlasPublic

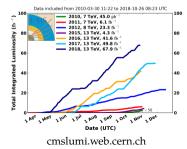

PROTON-PROTON COLLISIONS IN LHC RUN1 AND RUN2

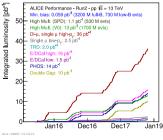


CMS Integrated Luminosity Delivered, pp

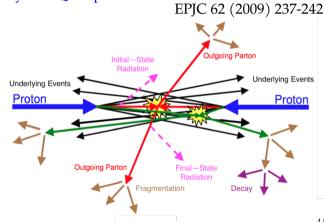


cmslumi.web.cern.ch


PROTON-PROTON COLLISIONS IN LHC RUN1 AND RUN2



CMS Integrated Luminosity Delivered, pp


Soft **QCD** in PP collisions

At LHC energy \rightarrow more contributions from hard-processes

► Multi Parton Interactions (MPI) : more than one hard scattering

Still particle production dominated by Soft-QCD processes

- ISR + FSR
 (gluon-strahlung)
- colour-connected beam remnant
- ► infrared MPI (not primary)
 - $p_{\rm T} \sim \text{few GeV}$
 - non perturbative
 - ► phenomenology
 - ► modelling

A LARGE ION COLLIDER EXPERIMENT

V0 (Scintillator hodoscopes)

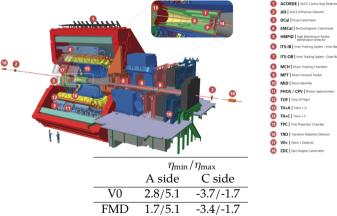
- triggers forward activity
- multiplicity & centrality estimation

FMD (Forward Multiplicity Detector)

- Three sets of Si strip sensors
- close to V0 detectors

SPD (Silicon Pixel Detector)

- 6-layer silicon detector
- innermost tracking at mid rapidity

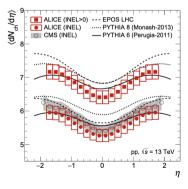

TPC (Time Projection Chamber)

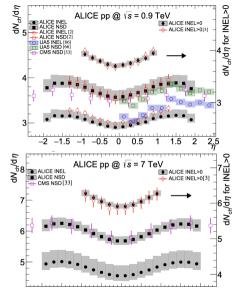
- Large cylindrical detector
- designed upto $dN_{ch}/d\eta \sim 8000$

- ▶ 18 detectors, sensitivity at low *p*_T, excellent PID
- Optimized for soft QCD physics

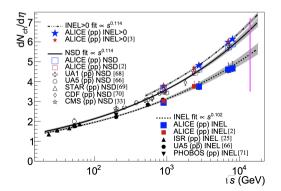
ITS

TPC


-1.4/1.4

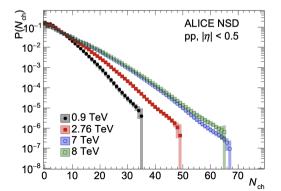

-0.9/0.9

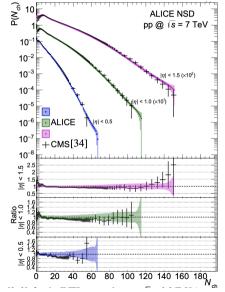
Summary of the results in PP collisions at LHC


Туре	\sqrt{s} (TeV)	paper				
	0.9, 2.76, 7 and 8	Eur. Phys. J. C 77 (2017) 33				
ALICE	0.9, 7 and 8	Eur. Phys. J. C 77 (2017)				
ALICE	5.02, 7, 13	Eur. Phys. J. C 81 (2021) 630				
	13	Phys. Lett. B 753 (2016) 319-329				
	7	Phys. Rev. Lett. 105, 022002				
CMS	0.9, 2.36 and 7	JHEP 1101 (2011) 079				
CMS	13	Phys. Lett. B 751, (2015) 143-163				
	13	Eur. Phys. J. C 78 (2018) 697				
ATLAS	8	Eur. Phys. J. C 76 (2016) 403				
AILAS	13	Phys. Lett. B758 (2016) 67				

Summary of the results in PP collisions at LHC

Туре	\sqrt{s} (TeV)	paper			
	0.9, 2.76, 7 and 8	Eur. Phys. J. C 77 (2017) 33			
ALICE	0.9, 7 and 8	Eur. Phys. J. C 77 (2017)			
ALICE	5.02, 7, 13	Eur. Phys. J. C 81 (2021) 630			
	13	Phys. Lett. B 753 (2016) 319-329			
	7	Phys. Rev. Lett. 105, 022002			
CMS	0.9, 2.36 and 7	JHEP 1101 (2011) 079			
CMS	13	Phys. Lett. B 751, (2015) 143-163			
	13	Eur. Phys. J. C 78 (2018) 697			
ATLAS	8	Eur. Phys. J. C 76 (2016) 403			
AILAS	13	Phys. Lett. B758 (2016) 67			




 $\langle \mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta
angle = \int \mathrm{d}\eta \mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta \ \langle \mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta
angle \propto s^{\Delta}$

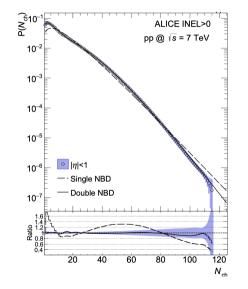
- ► A power law of *s*
- ► *s*: squared centre-of-mass energy
- Δ: Pomeron trajectory intercept parameter
- Above LHC energy: the power-law broken because of the unitarity

Summary of the results in PP collisions at \mbox{LHC}

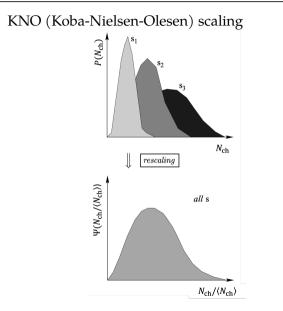
Туре	\sqrt{s} (TeV)	paper
	0.9, 2.76, 7 and 8	Eur. Phys. J. C 77 (2017) 33
ALICE	0.9, 7 and 8	Eur. Phys. J. C 77 (2017)
ALICE	5.02, 7, 13	Eur. Phys. J. C 81 (2021) 630
	13	Phys. Lett. B 753 (2016) 319-329
	7	Phys. Rev. Lett. 105, 022002
CMS	0.9, 2.36 and 7	JHEP 1101 (2011) 079
CIVIS	13	Phys. Lett. B 751, (2015) 143-163
	13	Eur. Phys. J. C 78 (2018) 697
ATLAS	8	Eur. Phys. J. C 76 (2016) 403
AILAS	13	Phys. Lett. B758 (2016) 67

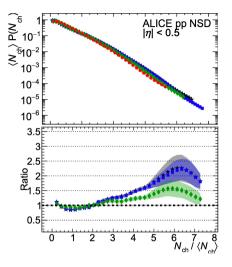
Summary of the results in PP collisions at LHC

Single NBD fit

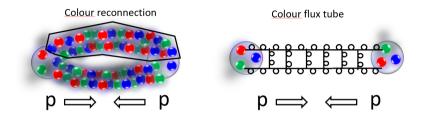

 Traditional parametrisation of particle multiplicity

$$P_{\text{NBD}}(n, \langle n \rangle, k) = \frac{\Gamma(n+k)}{\Gamma(k)\Gamma(n+1)} \left[\frac{\langle n \rangle}{\langle n \rangle + k}\right]^n \times \left[\frac{k}{\langle n \rangle + k}\right]^k$$

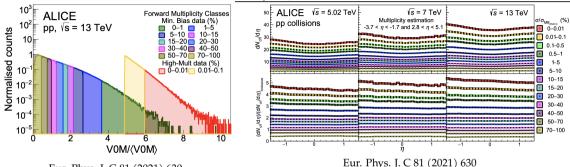

Single NBD fit overestimates the data at LHC


Double NBD fit

- ► Weighted sum of two NBD functions
 - $P(n) = \lambda \left[\alpha P_{\text{NBD}}(n, \langle n_1 \rangle, k_1) + (1 \alpha) P_{\text{NBD}}(n, \langle n_2 \rangle, k_2) \right]$
 - α : soft and MPI (not primary)
 - 1α : hard scattering
- Describes the data better \rightarrow some hints of MPI

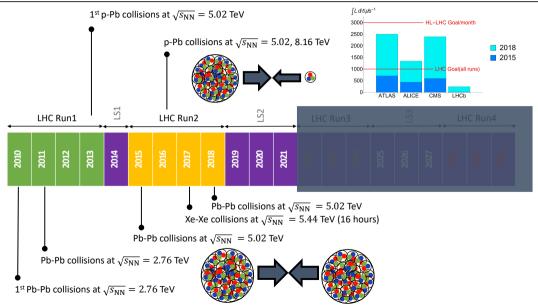


Summary of the results in PP collisions at LHC

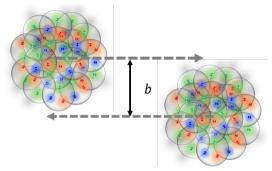


MPI REGULATION SCENARIOS

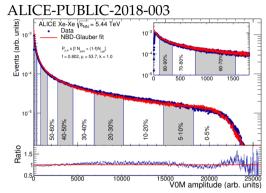
- Colour reconnection (PYTHIA 8 Monash)
 - clour strings from two hard scatterings are connected
 - two hard scatterings start to dependent in high mul pp collisions
 - the rise of $\langle p_T \rangle$ with multiplicity like flow boost
- ► Core & corona (EPOS-LHC)
 - multiparton scattering froms a coulur-flux tube (Pomeron ladder)
 - ► Tube's high density region → thermalised as a flow-like(core)
 - ► Tube's edge region → hadronised as conventional


Multiplicity dependent ${
m d}N_{
m ch}/{
m d}\eta$

Eur. Phys. J. C 81 (2021) 630


- Measurements provide input for the tuning of perturbative and soft QCD models
- Colour reconnection and core-corona models describe particle production in high-multiplicity within 10%
- Reference data for all multiplicity dependent studies in pp collisions

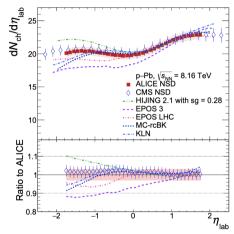
$P\!\!-\!PB$ and $PB\!-\!PB$ collisions in LHC Run1 and Run2


Туре	$\sqrt{s_{\rm NN}}$ (TeV)	paper				
	Pb–Pb 2.76	Phys. Rev. Lett. 106, 032301				
	Pb–Pb 2.76	Phys. Lett. B 726, (2013) 610-622				
ALICE	Pb–Pb 5.02	Phys. Rev. Lett. 116 (2016)				
ALICE	Xe–Xe 5.44	Phys.Lett.B 790 (2019) 35-48				
	p–Pb 5.02	Phys. Rev. Lett. 110 (2013)				
	p–Pb 8.16	Eur. Phys. J. C (2019) 79: 307				
	Pb–Pb 2.76	JHEP 08 (2011) 141				
CMS	Xe–Xe 5.44	Phys. Lett. B 799 (2019) 135049				
	p–Pb 5.02 and 8.16	JHEP01 (2018) 045				
ATLAS	Pb–Pb 2.76	Phys. Lett. B 710 (2012) 363-382				
AILAS	p–Pb 5.02	Eur. Phys. J. C (2016) 76:199				

CENTRALITY ESTIMATION

Impact parameter (b)

- The degree of geometrical overlap
- Centrality : fraction of geometrical cross-section
- $N_{\text{part}}, N_{\text{coll}}$



Centrality estimation for Xe-Xe

- Deformation of the nuclear density considered
- Multiplicity with the V0 detector
- NBD Glauber fit coupled to a two component model

$\langle dN_{ch}/d\eta angle$ in p-Pb collisions

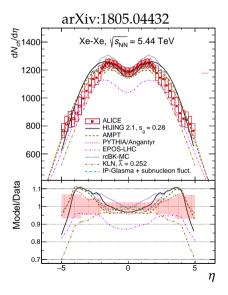
Eur. Phys. J. C (2019) 79: 307

All models lie within 15% of data

HIJING (Phys. Rev. C86 (2012) 051901)

- strong b dependence of parton shadowing
- combines pQCD and soft QCD
- reproduces magnitude and shape for Pb-going side

EPOS LHC (Phys. Rev. C92 (2015) 034906)


- collective effects like flow included
- reproduces Pb-going side

EPOS 3 (Phys. Rev. C89 (2014) 064903)

includes a full viscous hydrodynamical simulationonly the most forward part in the Pb-going side

rc-BK (Nucl. Phys. A897 (2013) 1-27) KLN (Phys. Rev. C85 (2012) 044920)

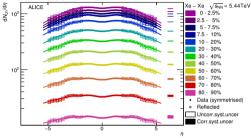
- saturation based models
- perform better in $\eta_{\text{lab}} > -1.3$

HIJING

Good match in mid, overestimate at forward η (due to large value of $s_g)$

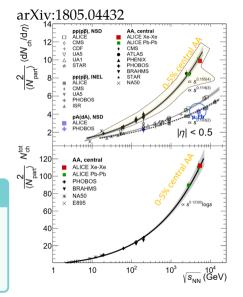
AMPT and PYTHIA/Angantyr

fairly good, slight overestimate at forward η

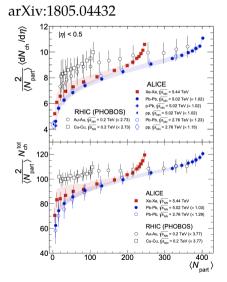

EPOS LHC

underestimate data overall

rcBK-MC: overall overestimation KLN: matches in mid η , not true for forward η IP-Glasma: wider than data

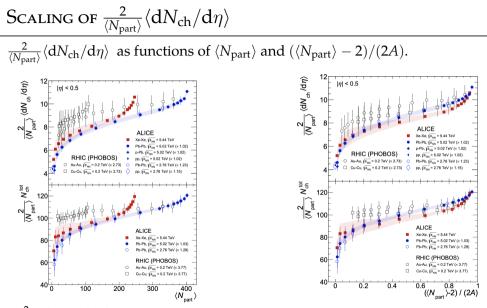

$\langle \mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta angle$ and $N_{\mathrm{ch}}^{\mathrm{tot}}$ in $\mathrm{Pb}-\mathrm{Pb}$ and $\mathrm{Xe}-\mathrm{Xe}$ collisions

arXiv:1805.04432

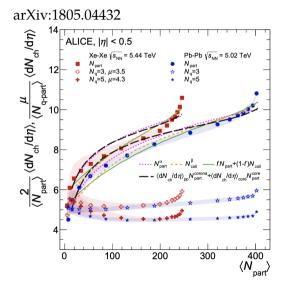


 $rac{2}{N_{
m part}
angle}\langle {
m d}N_{
m ch}/{
m d}\eta
angle$ and $rac{2}{\langle N_{
m part}
angle}N_{
m ch}^{
m tot}$

- ► for the most 5% central collisions
- ► Xe-Xe result is in agreement with the trend
- A stronger rise w.r.t $\sqrt{s_{NN}}$ than for pp
- At $|\eta| < 0.5$ p–Pb fits with INEL pp points



 $rac{2}{\langle N_{
m part}
angle}\langle dN_{
m ch}/d\eta
angle$ and $rac{2}{\langle N_{
m part}
angle}N_{
m ch}^{
m tot}$ as a function of $\langle N_{
m part}
angle$

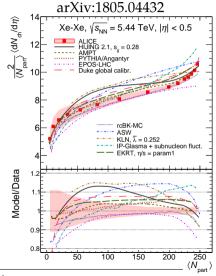

Data are scaled to \sqrt{s} , $\sqrt{s_{\text{NN}}} = 5.44$ TeV (prev.) to match with Xe–Xe results.

- ALICE data decreasing by 2 from the most central to the peripheral
- smoothly connect to pp and p–Pb
- Xe-Xe shapes exceed Pb-Pb at similar (Npart) for the top 10 % central collisions
 - RHIC data show hint of same behaviour

 $\frac{2}{\langle N_{\text{part}} \rangle} \langle dN_{\text{ch}}/d\eta \rangle$ depends on centrality rather than on the size of collision systems

Scaling of $rac{2}{\langle N_{
m part}
angle}\langle dN_{
m ch}/d\eta
angle$

Different scalings for particle production


- 1. Power law function
- 2. Two component model
- 3. Core and corona model (Phys. Rev. Lett. 98 (2007) 152301))

4. Quark-Glauber parametrisation

(Phys. Rev. C67 (2003) 064905 , Phys.Rev. C94 no. 2, (2016) 024914)

- using wounded constituent quarks
- $N_q = 3$ and 5
- A scaling violation for the 0–5% centrality range in Xe–Xe collisions (0-1-2-3-4-5% binning)

$rac{2}{\langle N_{ m part} angle}\langle dN_{ m ch}/d\eta angle$ and models in Xe - Xe collisions

AMPT (Phys. Rev. C72 (2005) 064901)

- initial state by HIJING
- and then hydrodynamical evolution

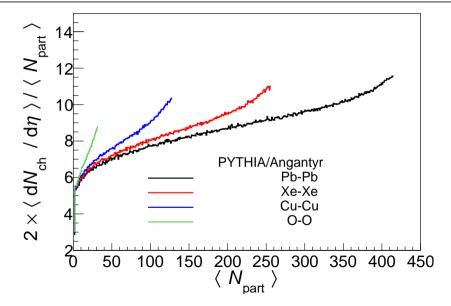
PYTHIA/Angantyr (JHEP 10 (2016) 139)

performing each nucleon-pair (parton level)Lund strings hadronised as an ensemble

Duke global (Phys. Rev. C92 no. 1, (2015) 011901

– viscous hydrodynamics coupled to a hadronic cascade model

rc-BK, KLN, ASW¹, IP-Glasma² and EKRT³

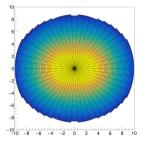

- saturation-inspired models to limit N_{parton}

All models describe data within $\pm 20\%$

⁰1. Phys. Rev. Lett. 94 (2005) 022002, 2. Phys. Rev. Lett. 108 (2012) 252301, 3. Phys. Rev. C97 no. 3, (2018) 034911

L	HC Run1		LS1		LHC	Run2		•	LS2		LH	IC Run	13		LS3	,	LH	IC Rur	אנ
2010	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	502	8	2024	2025	2026	2027	2028	2029	2080
Year	Sys	tems,	$\sqrt{s_{_{ m NN}}}$. ,	Time		$L_{\rm int}$												
2022)	-Pb 5.: 5.5 Te			3 wee 1 wee		2.3 ı 3 pb		LICI	E), 30	0 pb	$^{-1}$ (A'	TLAS	S, CM	IS), 2	5 pb^-	⁻¹ (Ll	HCb)	
2023	2	-Pb 5.: D, p–0			5 wee 1 wee		3.9 1 500		and	200 L	b^{-1}								
2024	p–F	b 8.8 8.8 Te	TeV	í	3 wee few d	ks	0.61	b^{-1}	(ATL	AS, (CMS)		pb^{-1}						

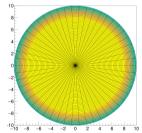
 $rac{2}{\langle N_{
m part}
angle}\langle dN_{
m ch}/d\eta
angle$ of models for light ions


- Charged particle production mechanism at LHC has greatly been studied for the last 10 years in various collision systems and at center-of-mass energies
 - pp collisions at $\sqrt{s} = 0.9, 2.76, 7, 8$ and 13 TeV
 - p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02, 8.16$ TeV
 - Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ and 5.02 TeV
 - Xe-Xe collisions at $\sqrt{s_{\rm NN}} = 5.44$ TeV
- \sqrt{s} behaviour of $dN_{ch}/d\eta$ established
- Evidence for MPI from various measurements in pp collisions and some mechanisms introduced to regulate particle production and explain some collective effects in high-multiplicity events
- ► Medium-sized Xe-ion acts like a heavy ion → lighter ions? (OO, p-O) in LHC Run3
- Models have been tuned but still need more constraints

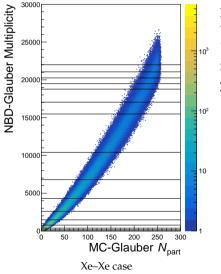
► Xe ion (deformed)

$$\rho(r, \vartheta) = \rho_0 \frac{1}{1 + \exp\left(\frac{r - R(\vartheta)}{a}\right)}$$

- ρ_0 : the nucleon density
- The nuclear skin thickness $a = 0.59 \pm 0.07$ fm⁻¹ Nuclear radius $R(\vartheta) = R_0 [1 + \beta_2 Y_{20}(\vartheta)]$

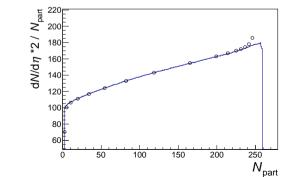


¹Phys. Rev. Lett. 118 no. 26, (2017) 262501


▶ Pb ion (spherical)

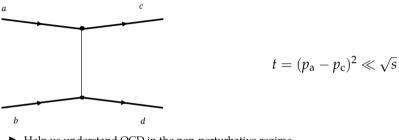
$$\rho(r, \vartheta) = \rho_0 \frac{1}{1 + \exp\left(\frac{r-R}{a}\right)}$$

- ho_0 : the nucleon density The nuclear skin thickness $a=0.546\pm0.01$ fm
- Nuclear radius $R = 6.62 \pm 0.06$ fm



MULTIPLICITY FLUCTUATION?

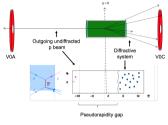
NBD-Glauber Multiplicity (fitted to V0M) and MC-Glauber $\langle N_{part} \rangle$ filled on left

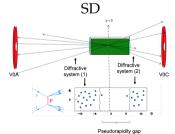

1. When sliced by centrality (0-1-2-3-4-5-7.5-10-20-...) and measured $\frac{2}{\langle N_{\text{part}} \rangle} \langle dN_{\text{ch}}/d\eta \rangle$ vs $\langle N_{\text{part}} \rangle$. (open circle) 2. When projected on $\langle N_{\text{part}} \rangle$ -axis then measured $\frac{2}{\langle N_{\text{part}} \rangle} \langle dN_{\text{ch}}/d\eta \rangle$ vs $\langle N_{\text{part}} \rangle$ (blue line)

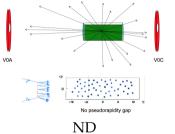
23/20

Diffraction

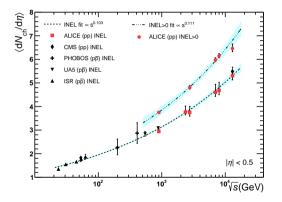
When the squared momentum transfer is much less than \sqrt{s}

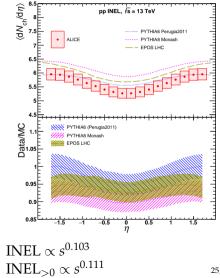


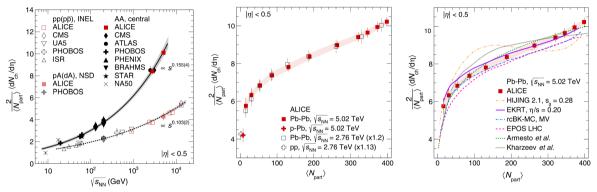

- Help us understand QCD in the non-perturbative regime $(t \sim 0 \text{ or } q^2 < \Lambda_{QCD}^2)$
- ► By Regge theory ^{1 2 3}, diffraction proceeds via the exchange of Pomerons (gg_{leading order} + ggg_{next leading order} + ···)


¹P.D.B.Collins, An Introduction to Regge Theory and High Energy Physics, Cambridge, 1977

³V. Barone, E. Predazzi, High-Energy Particle Diffraction ,Springer, Berlin, 200


²A.B.Kaidalov,Phys.Rep.50,157,1979





$N_{\rm ch}$ in pp collisions

- HIJING using gluon shadowing parameter s_g = 0.28
- ► EPOS based on Gribov-Regge theory incorporated with collected effect
- ► Saturation-inspired models : rcBK-MC, Armesto, Kharzeev and EKRT

Published multiplicity papers

Туре	\sqrt{s} (TeV)	paper
10.10	0.9, 2.76, 7 and 8	Eur. Phys. J. C 77 (2017) 33
pp	13	Phys. Lett. B 753 (2016) 319-329

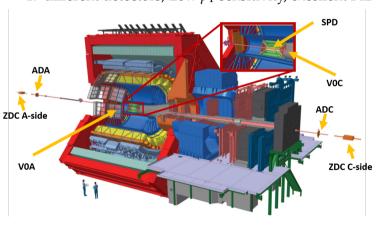
- Reference data to study nuclear effect
 - ► in nucleus–nucleus
 - ► in proton-nucleus collisions
- ► Big contribution from non-perturbative QCD processes
 - ▶ $INEL^1 : ND + SD + DD + CD ...$
 - ► NSD : ND + DD (to ignore large uncertainty from SD)
 - ► INEL_{>0} : INEL + at least one activity in |η| = 1 (effective filter for SD and DD events)

 $^{1}\mathrm{INEL} = \mathrm{ND}(\sim70~\%) + \mathrm{SD}~(\sim20~\%) + \mathrm{DD}~(\sim10~\%) + \mathrm{CD}~(<1~\%)~\mathrm{arXiv:1208.4968}$

Published (ongoing) multiplicity papers

Туре	$\sqrt{s_{\rm NN}}$ (TeV)	paper
p-Pb	5.02	PRL 110 (2013) 032301
	8.16	preliminary

- Valuable tool to discriminate between
 - ► final state effects in nucleus-nucleus
 - initial state effect of nuclei themselves
- \blacktriangleright N_{ch}
 - Discriminate the initial and final state effects
 - A tool to study the various models of gluon saturation¹
 - Providing constraints to the initial state and small Bjorken-x modeling


¹Different descriptions of the upper limit in growth of the parton density

Published (and ongoing) multiplicity papers

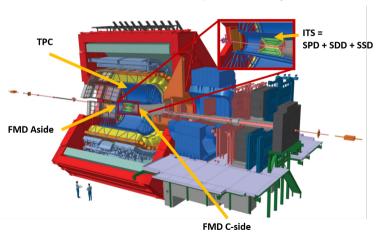
Туре	$\sqrt{s_{\rm NN}}$ (TeV)	paper
Pb-Pb	2.76	Phys. Rev. Lett. 106, (2011) 032301
PD-PD	5.02	Phys. Rev. Lett. 116 (2016) 222302
Xe-Xe	5.44	

- N_{ch} : A key observable in the QGP (initial energy density)
- ► Impact parameter (*b*): The degree of geometrical overlap
- ► Centrality : Experimental proxy of *b*
- N_{part} : the number of nucleons participating in the collision
- N_{coll}: the number of binary nucleon-nucleon collisions among the participant nucleons

A LARGE ION COLLIDER EXPERIMENT

► 17 different detectors, Low *p*_T sensitivity, excellent PID

 $\begin{tabular}{|c|c|c|c|c|} \hline Trigger detectors & $$\eta_{min}/\eta_{max}$ \\ \hline A side C side $$ \\ \hline C side C side C side C side $$ \\ \hline C side C side C side $$ \\ \hline C side C side C side $$ \\ \hline C side C side C side $$ \\ \hline \ C side $$ \\ \hline \ C side $$ \\$

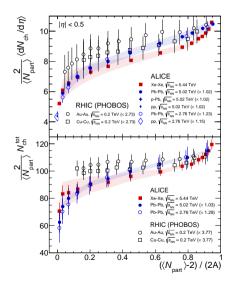

SPD (Silicon Pixel Detector)

- Innermost two-layer silicon detector
- ▶ r = 3.9, 7.6 cm
- Triggers central activity
 V0 (Scintillator hodoscopes)
 - ► Triggers forward activity
 - ► z = -0.9, 3.3 m

AD (Alice Diffraction)

- Scintillation counters
- ▶ *z* = -19.5, 17 m

ZDC :



▶ 17 different detectors, Low $p_{\rm T}$ sensitivity, excellent PID

Data taking detectors							
	$\eta_{ m min}/\eta_{ m max}$						
	A side	C side					
ITS	-1.4	/1.4					
TPC	-0.9	0/0.9					
FMD	1.7/5.1	-3.4/-1.7					
ITS (Inn	er Tracking	g System)					
▶ 6]	layers of Si	detectors					
► Co	ontaining S	PD					
TPC (Ti	me Projecti	on Chamber)					
► La	arge cylind	rical detector					
► -2	50 < z < 250	0 cm					
► 86	r < 250 c	cm					
► 55	8 k readou	t channels					
FMD (Fo	rward Multipl	icity Detector)					

- Two sets of Si strip sensors
- close to V0 detectors

$rac{2}{\langle N_{ m part} angle}\langle dN_{ch}/d\eta angle$ and $rac{2}{\langle N_{ m part} angle}N_{ch}^{tot}$ as a function of centrality

Data are scaled to \sqrt{s} , $\sqrt{s_{\text{NN}}} = 5.44$ TeV (prev.) to match with Xe–Xe results.

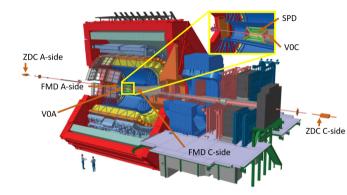
- ALICE data decreasing by 2 from the most central to the peripheral
- smoothly connect to pp and p–Pb

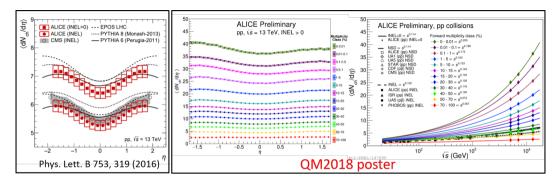
A LARGE ION COLLIDER EXPERIMENT

V0 (Scintillator hodoscopes)

- triggers forward activity
- -3.7< η <-1.7, 2.8< η <5.1

SPD (Silicon Pixel Detector)


- Two-layer silicon detector
- counting tracklets at mid rapidity
- \bullet -2 $<\eta$ $<\!\!2$


FMD (Forward Mult. Detector)

- three sets of Si strip sensors
 counting N_{ch} at forward rapidity
- -3.7< η <-1.7, 1.7< η <5.1

ZDC (Zero Degree Calorimeter)

• measuring *E* of spectator nucleons • $n \sim \pm 10$ ▶ 18 detectors, sensitivity at low *p*_T, excellent PID

- Inclusive study : INEL $\propto s^{0.102}$, NSD $\propto s^{0.114}$ and INEL_{>0}¹ $\propto s^{0.114}$
- Multiplicity dependence study²
 - $\langle dN_{ch}/d\eta \rangle$ for different multiplicity classes
 - The evolution of $\langle dN_{ch}/d\eta \rangle$ with \sqrt{s} : steeper for higher multiplicity class (MPI)

 $^1 \mathrm{INEL}$ requiring at least one charged particle in $|\eta|=1$

²"Multiplicity dependence study of the η -density distribution of charged particles in pp collisions with ALICE" by Prabhakar Palni

Charged-particle multiplicity density studies on various collision systems and energies in centre of mass

pp and p–Pb collisions

- Compared to various theoretical models: for p-Pb better agreement with saturation based models
- ▶ $|\eta| < 0.5 \langle dN_{\rm ch}/d\eta \rangle \; (|\eta| < 0.5)$ in p–Pb fits with INEL pp points

Pb–Pb and Xe–Xe collisions

- ► The high statistics distributions are useful to constrain the available models
- $\frac{2}{\langle N_{\text{part}} \rangle} \langle dN_{\text{ch}}/d\eta \rangle$ and $\frac{2}{\langle N_{\text{part}} \rangle} N_{\text{ch}}^{\text{tot}}$ for the top 5% central Xe–Xe collisions in agreement with the previous AA power-law trend
- ► steep rise of $\frac{2}{\langle N_{\text{part}} \rangle} \langle dN_{\text{ch}}/d\eta \rangle$ and $\frac{2}{\langle N_{\text{part}} \rangle} N_{\text{ch}}^{\text{tot}}$, and N_{part} -scaling violation for the 0–5% central Xe-Xe

► Update of the Xe–Xe paper done by reflecting all comments

- ► New binning Pb–Pb results updated
- Particle production model fitting redone for the new results
- all answers for the referee prepared
- Uptick study on $\frac{2}{\langle N_{part} \rangle} \langle dN_{ch}/d\eta \rangle$ in Pb–Pb and Xe–Xe data
 - The whole effect is global in η , not local.
 - The effect is not relevant to σ_{NN} fluctuation.
 - ► Multiplicity fluctuation for a given (N_{part}) and partly artificial effect of the centrality slicing.
 - Contribution from the multiplicity bias (but expected to be small) could be related partially.