Phase Space Density Analysis
 Transfer Matrices 17 Dec 2019

Craig Brown Brunel University

Introduction

- Transmission losses leads to a lower number of particles further downstream
- These may bias the downstream measurements when comparing them to the upstream measurements
- Going to try to determine the reason for the missingness
- Will try to find transfer matrix that describes the transport

Potential next step

- The missing data downstream is inaccessible, however the upstream sample which makes it downstream can be compared to the downstream sample
- The transport, M, of a covariance matrix from upstream to downstream can be given by:

$$
\Sigma_{\text {down }}=\left\langle X_{\text {down }} \tilde{X}_{\text {down }}\right\rangle=\left\langle M X_{\text {up }} \widetilde{M} \tilde{X}_{\text {up }}\right\rangle=M\left\langle X_{\text {up }} \tilde{X}_{\text {up }}\right\rangle \widetilde{M}=M \Sigma_{\text {up }} \widetilde{M}
$$

- The determinant is given by:

$$
\left|\Sigma_{\text {down }}\right|=\left|M \Sigma_{u p} \widetilde{M}\right|=|M|^{2}\left|\Sigma_{u p}\right|=\left|\Sigma_{u p}\right|
$$

- The transfer matrix M has been previously investigated by Sophie Middleton and Chris Rogers
- A potential investigation would be to investigate the change in R for different fraction sizes of the beam. If stable it could be used to investigate the missing data downstream to see if it is due to scraping and magnet misalignment affects and nothing else

M Matrix

- The transfer Matrix components are then used to get the downstream distribution through:

$$
\begin{aligned}
& x_{d}=M_{00}+M_{01} x_{u}+M_{02} x_{u}^{\prime}+M_{03} y_{u}+M_{04} y_{u}^{\prime} \\
& x_{d}^{\prime}=M_{10}+M_{11} x_{u}+M_{12} x_{u}^{\prime}+M_{13} y_{u}+M_{14} y_{u}^{\prime} \\
& y_{d}=M_{20}+M_{21} x_{u}+M_{22} x_{u}^{\prime}+M_{23} y_{u}+M_{24} y_{u}^{\prime} \\
& y_{d}^{\prime}=M_{30}+M_{31} x_{u}+M_{32} x_{u}^{\prime}+M_{33} y_{u}+M_{34} y_{u}^{\prime}
\end{aligned}
$$

- Note this assumes the tracker stations are parallel with no rotations. In this case many of the Matrix components are simply zero. Corrections can be made for these if that is not the case.
- Corrections may also need to be added for any deviations in the magnetic field in x and y. Further corrections could also be added to include higher order effects. This also assumes the transverse only description is valid, but it may need to be extended to a full 6D description. The main problem may then be large errors, where it may become difficult to discern anything.
- If the error for the transfer of individual particles proves too large, another way too look at it would be through the transfer of moments

Higher Order

- Principle of transfer matrix can be extended to higher orders by considering squared terms, cubed terms, etc.
- Will also look at effect of including a offset term a0, i.e. the M_(i0) term
- Will also look at including pz term

First order

- Downstream x position from TKU S1 to TKD S1:
- Blue: $x_{d}=a_{00}+a_{01} x_{u}+a_{02} p x_{u}+a_{03} y_{u}+a_{04} p y_{u}+a_{05} p z_{u}$
- Orange: $x_{d}=a_{00} x_{u}+a_{01} p x_{u}+a_{02} y_{u}+a_{03} p y_{u}+a_{04} p z_{u}$
- Green:

$$
x_{d}=a_{00} x_{u}+a_{01} p x_{u}+a_{02} y_{u}+a_{03} p y_{u}
$$

- Red:

$$
x_{d}=a_{00}+a_{01} x_{u}+a_{02} p x_{u}+a_{03} y_{u}+a_{04} p y_{u}
$$

First Order

- Similar for downstream y, px, py and pz
- Write this for every point in sample, i.e. every downstream coordinate in terms of upstream coordinates
- Use linear least squares to solve (constants which minimize linear equations)
- Apply transfer matrix (constants) to upstream coordinates and compare to actual downstream data i.e. residuals

First Order Transfer Matrices

Blue

$1.86982473 \mathrm{e}+01$
$1.26265433 \mathrm{e}+00$
$-1.18198816 \mathrm{e}+00$
$-8.65506330 \mathrm{e}-01$
$7.36893924 \mathrm{e}+01$
$7.91073650 \mathrm{e}-01$
$-4.86970413 \mathrm{e}-02$ $-2.40262279 e-01$ 7.01521099e-01 1.38945059e-02
$-6.70880696 \mathrm{e}-02$
6.20486835e-01
$-1.81033086 e+00$
$2.53385814 \mathrm{e}-01$
$5.88241470 \mathrm{e}-03$
$2.26740739 \mathrm{e}-01 \quad 1.77258700 \mathrm{e}+00$
$-7.16163409 \mathrm{e}-01-2.31249175 \mathrm{e}-01$ 7.81445555e-01 -1.07156657e-01 6.50026350e-02 $\quad 5.77103827 e-01$
1.86652435e-02

0.79067717	-0.06934735	0.2266646	1.77178437	-0.00602366
-0.04872381	0.62033427	-0.71616855	-0.23130338	0.02526295
-0.24023722	-1.81018804	0.78145037	-0.10710592	-0.02348077
0.70153945	0.25349039	-0.06499911	0.57714098	0.01926848
0.01233201	-0.00302135	0.00275876	0.01550209	0.98159356

0.79378118	-0.06566514	0.22296971	1.77626513
-0.06174187	0.60489127	-0.70067237	-0.2500955
-0.22813752	-1.79583447	0.76704737	-0.08963949
0.69161036	0.24171176	-0.05317992	0.56280791

Red

-0.76402214	0.79084041	-0.0692268	0.22644789	1.77201059
3.39573388	-0.04867148	0.62072124	-0.71613131	-0.231186
-3.15620058	-0.24028594	-1.81054781	0.78141585	-0.10721513
2.58558925	0.70156246	0.25376506	-0.06495071	0.57720604

X Residual order 1
Y Residual order 1

Px Residual order 1

Residuals

Py Residual order 1

0.010

Px Distribution order 1

Distributions
0.007
0.006 ?

0.006
0.004
0.002
0.000

Py Distribution order 1

Higher Order

- Massive Residuals for $1^{\text {st }}$ Order
- Always likely a higher order transfer matrix would be needed due to aberrations
- Higher order terms will be included now
- E.g. $2^{\text {nd }}$ order has $x^{2}, x p x, x y$, etc.
- 3rd order has $x^{3}, x^{2} p x$, xpxpy, etc.

Px Residual order 2

$2^{\text {nd }}$ Order
0.025

Py Residual order 2

$3^{\text {rd }}$ Order

Pz Residual order 3

Py Residual order 3

X Residual order 6

Px Residual order 6

Py Residual order 6

$6^{\text {th }}$ Order

Py Distribution order 6

Overfitting

- Higher orders do improve residuals, but only minor improvements are seen after a while
- Improvements are due to free parameters to fit to, rather than actual physical meaning
- True downstream distribution is still very different than that obtained from transfer matrix approach

Skewness due to Scattering

- Transfer matrix assumes particles due not scatter, decay, etc.
- Including those particles will skew the linearised equations, and thus the constants and transfer matrices
- For simplicity will look between two stations where energy straggling is low, likely little scattering
- Will remove particle that deviates most and redo calculations
- Will repeat process a number of times
- Will apply transfer matrix to another no absorber run

Energy difference (TKU S4-TKU S5)

Energy difference (TKU S2 - TKU S3)

Energy difference (TKU S3 - TKU S4)

Energy difference (TKU S1-TKU S2)

Energy difference (TKD S1-TKU S1)

Energy difference (TKD S3 - TKD S2)

Energy difference (TKD S2 - TKD S1)

Energy difference (TKD S4-TKD S3)

Energy Loss

- The RMS Energy Loss is lowest between TKU S2 and TKU S1
- Initially have 7010 particles
- Will look at results after removing eight particles from consideration
- Those eight particles deviated significantly, and likely have scattered or scraped along the way

Y Residual order 1

$2^{\text {nd }}$ Order

Py Residual order 2

$2^{\text {nd }}$ Order

8000 7000 6000 6000

 ${\underset{\sim}{c}}_{\substack{~}}^{5}$

Pz Residual order 2

Py Residual order 2

Px Residual order 3

$3^{\text {rd }}$ Order

Pz Residual order 3

Px Residual order 4

$4^{\text {th }}$ Order

Pz Residual order 4

Py Residual order 4

$4^{\text {th }}$ Order

Pz Distribution order 4

0.01
0.00

Py Distribution order 4

Transfer Matrix

- After $3^{\text {rd }}$ order no appreciable difference is noted in the residuals. Have reached resolution of tracker stations.
- The predicted distribution of the transfer matrix between TKU S2 and TKU S1 matches well with true experimental values.
- Will now apply transfer matrix to an independent run

Px Distribution order 4

Pz Distribution order 4

0.010

Py Distribution order 4

Conclusion

- Transfer Matrix from 3rd Order appears to predict well where particles are transported from TKU S2 to TKU S1 within the resolution of the trackers
- This is if one excludes particles which have largely deviated i.e. they have scattered/scraped
- Improvement if include Pz => should use full 6D approach and include time
- Will extend approach to other stations where Energy straggling is larger, especially between TKU and TKD.

THE END

