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Introduction
● Transmission losses leads to a lower number of particles 

further downstream

● These may bias the downstream measurements when 
comparing them to the upstream measurements

● Going to try to determine the reason for the missingness

● Will try to find transfer matrix that describes the transport
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Higher Order
● Principle of transfer matrix can be extended to 

higher orders by considering squared terms, 
cubed terms, etc.

● Will also look at effect of including a offset term 
a0, i.e. the M_(i0) term

● Will also look at including pz term



  

● Downstream x position from TKU S1 to TKD S1:
● Blue: xd = a00 + a01xu + a02pxu + a03yu + a04pyu + a05pzu

● Orange:     xd = a00xu + a01pxu + a02yu + a03pyu + a04pzu

● Green:                    xd = a00xu + a01pxu + a02yu + a03pyu

● Red:               xd = a00 + a01xu + a02pxu + a03yu + a04pyu

First order



  

First Order
● Similar for downstream y, px, py and pz
● Write this for every point in sample, i.e. every 

downstream coordinate in terms of upstream coordinates
● Use linear least squares to solve (constants which 

minimize linear equations)
● Apply transfer matrix (constants) to upstream coordinates 

and compare to actual downstream data i.e. residuals
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Residuals



  

Residuals



  

Distributions



  

Higher Order
● Massive Residuals for 1st Order
● Always likely a higher order transfer matrix would 

be needed due to aberrations
● Higher order terms will be included now
● E.g. 2nd order has x2, xpx, xy, etc.
● 3rd order has x3, x2px, xpxpy, etc.



  

2nd Order



  

3rd Order



  

6th Order



  

6th Order



  

Overfitting
● Higher orders do improve residuals, but only 

minor improvements are seen after a while
● Improvements are due to free parameters to fit to, 

rather than actual physical meaning
● True downstream distribution is still very different 

than that obtained from transfer matrix approach



  

Skewness due to Scattering
● Transfer matrix assumes particles due not scatter, decay, etc.
● Including those particles will skew the linearised equations, and thus 

the constants and transfer matrices
● For simplicity will look between two stations where energy straggling 

is low, likely little scattering
● Will remove particle that deviates most and redo calculations
● Will repeat process a number of times
● Will apply transfer matrix to another no absorber run



  



  



  

Energy Loss
● The RMS Energy Loss is lowest between TKU S2 and 

TKU S1
● Initially have 7010 particles
● Will look at results after removing eight particles from 

consideration
● Those eight particles deviated significantly, and likely 

have scattered or scraped along the way 



  

1st Order



  

2nd Order



  

2nd Order



  

3rd Order



  

4th Order



  

4th Order



  

Transfer Matrix
● After 3rd order no appreciable difference is noted in 

the residuals. Have reached resolution of tracker 
stations.

● The predicted distribution of the transfer matrix 
between TKU S2 and TKU S1 matches well with true 
experimental values.

● Will now apply transfer matrix to an independent run



  

3rd Order



  

4th Order



  

4th Order



  

Conclusion
● Transfer Matrix from 3rd Order appears to predict well where 

particles are transported from TKU S2 to TKU S1 within the 
resolution of the trackers

● This is if one excludes particles which have largely deviated i.e. they 
have scattered/scraped

● Improvement if include Pz => should use full 6D approach and 
include time

● Will extend approach to other stations where Energy straggling is 
larger, especially between TKU and TKD.  



  

THE END
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