CHANNELING AND VOLUME REFLECTION In BENT CRYstal

W. Scandale

Spokes person of the UA9 Collaboration

outlook

- Crystal-particle interactions
- Planar channeling
- Deflection efficiency
- UA9 as a test bed for crystal-particle interactions
- Short crystals
- Volume reflection
- Multi volume reflection
- Applications in circular accelerators

Particle-crystals interactions

$$
U_{\text {eff }}=U_{0}+\frac{p v}{R} x \text { Effective potential in a bent crystal }
$$

$\alpha=\ell / R$

| $\alpha=\sqrt{\frac{2 U_{\max }}{p v}}$ |
| :--- |\quad| bending angle |
| :---: |
| critical angle |

$R_{c}=\frac{p v}{U^{\prime}\left(x_{\max }\right)} \approx \frac{p v x_{\max }}{2 U_{\max }} \quad$ critical radius

Coherent interactions

- Channeling
- volume reflection

Incoherent interactions

- multiple scattering
- volume capture
- dechanneling

Planar channeling

Nuclear density distribution for (110) si-crystal at $T=300^{\circ}$ with $R=38 \mathrm{~m}$

$$
P_{n}(x) \sim \exp \left(-\frac{x^{2}}{2 u_{1}^{2}}\right)
$$

$d=1.92 \mathrm{~A}$ is channel width
$u_{1}=0.038 \times d=0.076 \mathrm{~A}$ is RMS amplitude of the thermal vibration
$r_{c}=2.5 \times u_{1}=0.187 \mathrm{~A}$ is the screening distance from the point-like nuclear charge
$x_{m c}=\mathrm{d} / 2-r_{c}=0.77 A$ is the boundary amplitude of the stable channeling states
$U_{o b}=21.7 \mathrm{eV}$ is the depth of the planar potential well
$U_{x c}=13.5 \mathrm{eV}$ is the critical transverse energy for stable channeling states

If $\mathrm{x}_{\max } \leq \mathrm{x}_{\mathrm{mc}}$ channeling +MCS on electrons (channeling corridor) $N_{c h}(s) \sim \exp \left(-\frac{s}{L_{e}}\right)$
If $\mathrm{x}_{\max }>\mathrm{x}_{\mathrm{mc}}$ channeling $+\mathrm{INI}+\mathrm{MCS}$ on nuclei and $\mathrm{e}^{-}\left(\right.$nuclear corridor) $N_{c h}(s) \sim \exp \left(-\frac{s}{L_{n}}\right)$

$$
L_{n} \ll L_{e}
$$

Channeling and nuclear corridors

Scandale et al., PLB 680, 129 (2009)

Deflection efficiency

Deflection efficiency $P_{d}=$ capture efficiency $P_{c} \times$ probability of channeling $P_{c h}$

$$
P_{d}(R)=\underbrace{\exp \left(-\frac{\ell}{L_{e}(R)}\right) \int_{0}^{E_{x c}(R)} f\left(E_{x 0}\right) d E_{x 0}}_{\text {channeling corridor }}+\underbrace{\exp \left(-\frac{\ell}{L_{n}(R)}\right) \int_{E_{x c}(R)}^{U_{o b}(R)} f\left(E_{x 0}\right) d E_{x 0}}_{\text {nuclear corridor }}
$$

$f\left(E_{x 0}\right)$ is the distribution of initial transverse energy
$E_{x c}(R)=E_{\text {eff }}\left(r_{c}, R\right)$ is the critical transverse energy for stable channeling W. Scandale, et al., Phys. Rev. Lett. 102 (2009) 084801.

In long crystals $\left(\ell \gg L_{n}\right)$

- only the particles in the channeling corridor can be deflected ($E_{x 0}<E_{x c}$)
- the channeling efficiency is limited by the MCS on the electrons

$$
P_{d}(R)=P_{c h} \times P_{c}\left(E_{x 0}<E_{x c}\right)=\exp \left(-\frac{\ell}{L_{e}(R)}\right) \int_{0}^{E_{x c}(R)} f\left(E_{x 0}\right) d E_{x 0}
$$

Upper limit for the capture (and the channeling) efficiency in a long straight crystal

$$
\begin{array}{ll}
P_{d}(R)<P_{c}\left(E_{x 0}<E_{x c}\right) & \text { Deflection efficiency smaller than capture efficiency } \\
P_{c}=1-2 r_{c} / d_{p} & \text { Asymptotic value of } \mathrm{P}_{c} \text { for a parallel beam } \\
P_{c}=0.805 & \text { for (110) si-crystal straight (or large } \mathrm{R} \text {) with } \ell \gg L_{n} \text { at } \mathrm{T}=300^{\circ}
\end{array}
$$

Detectors for UA9 in the North Area

Two measurement arms - 10 m length in each

FIG. 1: Experimental layout in the H8 beam line.

Operational runs

- Use a low-divergence incoming beam
- Alignment run: only the tracking stations are in the beam line
- Linear scan: crystals are placed on the beam line
- Fast angular scan: scan of a large angular range to find the channeling orientation
- Detailed angular scan: $\sim 10^{5}$ events/step are acquired around the channeling orientation
- High statistics run: the crystal is left in the optimal channeling for a stat. of $\sim 10^{6} p$

Observables

- Detect the incoming direction of each particle
- Detect the outgoing direction after the interaction with the crystal
- Detect inelastic events

[^0]
Bent crystals for UA9

Quasimosaic crystal

- Bent along (111) planes
- Minimal length a few tenths of mm
- Non-equidistant planes d1/d2 = 3

Crystals

- Dislocation-free silicon crystals plates or strips
- for optimal channeling efficiency
\checkmark short length (few mm)
- SPS at $120 \div 270 \mathrm{GeV} 1 \div 2 \mathrm{~mm}$ length, $150 \div 170 \mu \mathrm{rad}$ angle
- LHC $3 \div 5 \mathrm{~mm}$ length, $40 \div 60 \mathrm{rrad}$ angle
\checkmark moderate bending radius $45 \div 70 \mathrm{~m}$
- Mechanical holders with large C-shape frame imparting the main crystal curvature
\checkmark Strip crystal: (110) planes are bent by anticlastic forces
\checkmark Quasimosaic crystal: (111) planes are bent by 3-D anticlastic forces through the elasticity tensor
- Expected crystal defects:
\checkmark Miscut: can be $\approx 100 \mu \mathrm{rad}$, but negligible effect if good orientation is applied
\checkmark Torsion: can be reduced down to $1 \mu \mathrm{rad} / \mathrm{mm} \rightarrow$ UA9 data in the SPS North Area
\checkmark Imperfection of the crystal surface: amorphous layer size $\leq 1 \mu \mathrm{~m}$

Coherent interactions in bent crystals

a Two coherent effects could be used for crystal-assisted beam deflection in particle accelerators:
\checkmark Channeling \rightarrow larger deflection with reduced efficiency

- SHORT CRYSTALS in channeling mode are preferred
W. Scandale et al., Nucl. Inst. and

Methods B 268 (2010) 2655-2659 $\rightarrow \times 5$ less inelastic interaction than in VR or in amorphous orientation (single hit of 400 GeV protons)

Channeling and VR angle and efficiency

- Identify channeling, reflection and amorphous peaks of the angular profile distribution
- Compute the angular shift -> deflections
- Integral of the events within $\pm 3 \sigma$ around amorphous, channeling and reflected peaks
- Normalize the integrals to the incoming flux
- Ratios of channeling or deflection over amorphous normalized peak integrals \rightarrow efficiencies

Example of efficiency estimate

Short crystal features

Incoming beam: protons at $400 \frac{\mathrm{GeV}}{c}$ with angular divergences $\sigma_{x}=9.3 \mu \mathrm{rad} ; \sigma_{y}=5.2 \mu \mathrm{rad}$
filtered at $\sigma_{x}=\sigma_{y} \leq 5 \mu \mathrm{rad}$
(110) si-crystal at $\mathrm{T}=300^{\circ} 70 \times 1.94 \times 0.5 \mathrm{~mm}^{3} \mathrm{R}=38 \mathrm{~m}$ and with $\ell=1.94 \mathrm{~mm} \ll L_{e}$

Deflection efficiency as a function of the incident angle for fraction of particles with horizontal incident directions inside contiguous angular windows each of $2 \mu \mathrm{rad}$
$\widehat{P_{d}}=83.4 \%$ The maximum value of the deflection efficiency exceeds the asymptotic limit for long crystals

Interpretation: angular window of $2 \mu \mathrm{rad} \ll$ critical angle of $10.4 \mu \mathrm{rad}$ \rightarrow the particles in the central bin travel very close to the channel axis without crossing the nuclear
 corridor

Dependence of L_{n} on incident angles $\theta_{x 0}$

W. Scandale, et al., Nucl. Instrum. Methods Phys. Res. B 268 (2010) 2655. W. Scandale, et al., Phys. Lett. B 743 (2015) 440.

Incoming beam: protons at $400 \frac{\mathrm{GeV}}{c}$ with angular divergences $\sigma_{x}=9.3 \mu \mathrm{rad} ; \sigma_{y}=5.2 \mu \mathrm{rad}-$ filtered at $\sigma_{x}=\sigma_{y} \leq 5 \mu \mathrm{rad}$
(110) si-crystal at $\mathrm{T}=300^{\circ} 70 \times 1.94 \times 0.5 \mathrm{~mm}^{3} \mathrm{R}=10.26 \mathrm{~m}, \ell=1.94 \mathrm{~mm} \ll L_{e}$ and $\alpha=189 \mu \mathrm{rad}$

$$
\theta_{c}=9.8 \mu \mathrm{rad}
$$

$$
P_{\text {dec }}=N_{\text {dech }} / N_{C H}
$$

Optimal orientation for channeling: incoming trajectory angles

$$
\left\{\begin{array}{c}
\theta_{\text {in }} \in \theta_{\text {in } 0} \pm \Delta \theta_{\text {in }} \\
\theta_{\text {in } 0}=0 \\
\Delta \theta_{\text {in }}=1.75 \mu \mathrm{rad}
\end{array}\right.
$$

Dechanneling probability

Incoming beam: protons at $400 \frac{\mathrm{GeV}}{\mathrm{c}}$ with angular divergences $\sigma_{x}=9.3 \mu \mathrm{rad} ; \sigma_{y}=5.2 \mu \mathrm{rad}-$ filtered at $\sigma_{x}=\sigma_{y} \leq 5 \mu \mathrm{rad}$ (110) si-crystal at $\mathrm{T}=300^{\circ} 70 \times 1.94 \times 0.5 \mathrm{~mm}^{3} \mathrm{R}=10.26 \mathrm{~m}, \ell=1.94 \mathrm{~mm} \ll L_{e}$ and $\alpha=189 \mu \mathrm{rad}$

$$
\theta_{c}=9.8 \mu \mathrm{rad}
$$

Channeling efficiency versus R_{c}

E. Bagli et al., Eur. Phys. J. C (2014) 74:2740

Experiment (H8 and SPS):

- Si bent crystal ($L=0.2 \mathrm{~cm}$)
- (110) plane
- $400 \mathrm{GeV} / \mathrm{c}$ protons
$\mathrm{Si}(110):$
$\mathrm{R}_{\mathrm{c}}=12 \mathrm{~m}$ at $\mathrm{pb}=7 \mathrm{TeV}$
~ 1 mrad deflection requires $\sim 12 \mathrm{~cm}$ long Si crystal

Inelastic nuclear interactions

Probability of nuclear interactions as a function of the crystal orientation.

- The crystal orientation is varying
- The angular range of incoming particles is fixed at $\pm 2.5 \mu \mathrm{rad}$.

Probability of nuclear interactions as a function of the cutting angle.

- The crystal orientation is fixed to maximize the channeling.
- The angular half-range (cutting angle) of the incoming particles is varying.

$V R$ parameters as a function of R

Volume reflection (VR) and volume capture (VC) are competing process
The VC probability dependence on the crystal radius R is approximately linear due to a linear increase of the tangency region length with increasing R

$$
P_{V C}(R) \approx R \theta_{c} / L_{d} \quad P_{V R}(R)=1-P_{V C}(R)
$$

W. Scandale et al., PRL 101, 234801 (2008)

FIG. 4. The dependencies of the VR parameters on the crystal curvature and the bending radius R : (a) the deflection angle $\theta_{v r}$ (dots) and its rms deviation due to the potential scattering $\bar{\sigma}_{v r}$ (squares), (b) the VR inefficiency ε.

MULTI - VR

Deflection angle

$$
\alpha_{M V R} \approx n \times \alpha_{V R}
$$

Deflection efficiency $P_{M V R} \approx P_{V R}^{n}=(1-\epsilon)^{n} \approx 1-n \epsilon$

Sequence of two bent crystals with the particle trajectories.

1. Particle $\mathbf{1}$ has volume reflections in both crystals near the tangency points with bent planes.
2. Particle $\mathbf{2}$ is volume captured in the first crystal and then volume reflected in the second one

MVR allows increasing the reflection angle at the cost of a reduced deflection efficiency

Double-reflection experiment

Experimental setup:

- QM1 on the rotational stage for off-axis alignment of the first crystal (preliminary scan)
- QM2 on the upper linear stage for alignment of second crystal (thanks to the anticlastic bend)
- many iterations for finding perfect alignment conditions

Experimental observations

$$
\begin{aligned}
& Q M 1 \\
& \alpha_{Q M 1}=78 \mu \mathrm{rad} \\
& \theta_{V R}=11.9 \mu \mathrm{rad} \\
& \eta_{V R}=97.8 \%
\end{aligned}
$$

$$
\begin{aligned}
& \text { QM2 } \\
& \alpha_{Q M 2}=69 \mu \mathrm{rad} \\
& \theta_{V R}=11.7 \mu \mathrm{rad} \\
& \eta_{V R}=98.3 \%
\end{aligned}
$$

double reflection angle: ~ $23 \mu \mathrm{rad}$ double deflection efficiency: ~ 96.7 \%

Multi-crystals

Several consecutive reflections

Multi-heads QM crystal (PNPI)

- enhance the deflection angle
- keep large cross section multistrip crystal (IHEP and INFN-Fe)

5-heads multi-QM-crystals

Quasimosaic deflector

- Five (111) crystal plates Size $14 \times 10 \times 0.65 \mathrm{~mm}^{3}$
$\alpha=110 \mu \mathrm{rad}$
- Cylindrical frame with $\mathrm{R}=2.7 \mathrm{~m}$
- Individual alignment by piezo elements
- Opening area $5 \times 3 \mathrm{~mm}^{2}$

Similar tests with a similar frame and a sequence of multi-strip crystals

CASE 1
8 strips crystals (111)
$\ell=2.25 \mathrm{~mm}, \alpha=300 \mu \mathrm{rad}$ Measured values:

$$
\theta_{M V R}=70 \mu \mathrm{rad} \varepsilon_{M V R}=0.85
$$

CASE 2

6 strips crystals (110)
$\ell=2 \mathrm{~mm}, \alpha=150 \mu \mathrm{rad}$
Measured values:
$\theta_{M V R}=40 \mu \mathrm{rad} \varepsilon_{M V R}=0.93$

MULTISTRIP

- MST 14 R=4.61 m
- Volume reflection angle ~100 $\mathrm{\mu rad}$
- Efficiency ~ 90 \%

MVR effect of the strips 3 to 13

- $\theta_{M V R}=110.6 \mu \mathrm{rad}$
- $\sigma_{M V R}=19.7 \mu \mathrm{rad}$
- $P_{M V R}\left(\theta_{x} \leq \vartheta_{b}\right)=88 \%$
- $P_{M V R}\left(\theta_{x} \leq 0\right)=94 \%$

Single VR inefficiency (simulation) $\varepsilon \approx 1.91$
\rightarrow Approximate value of the MVR efficiency 79%

MVR simulation of the strips 3 to 13

- $\theta_{M V R}=110.7 \mu \mathrm{rad}$
- $\sigma_{M V R}=20.2 \mu \mathrm{rad}$
- $\quad P_{M V R}\left(\theta_{x} \leq \vartheta_{b}\right)=91.2 \%$

In the hatched area there are the particles with at least one volume capture event. They are 11.7% of the total.

Optimizing the MVR

(110) si-crystals, $\mathrm{n} \leq 20$
$\theta_{c}=10 \mu \mathrm{rad} ; R_{c}=0.77 \mathrm{~m}$;
$\ell=1.5 \mathrm{~mm} ; \alpha=200 \mu \mathrm{rad} ;$

$$
R=7.5 \mathrm{~m}
$$

unparallel sequence

- chose $\theta_{V R}=\theta_{1}=\theta_{2}=$
- tangency points not changing from a crystal to another
- $\quad \theta_{M V R}=n \theta_{V R}$

7000 GeV protons

(110) si-crystals, $\mathrm{n} \leq 20$
$\theta_{c}=2.55 \mu \mathrm{rad} ; R_{c}=11.89 \mathrm{~m}$;
$\ell=1.2 \mathrm{~mm} ; \alpha=12 \mu \mathrm{rad} ;$

$$
R=100 \mathrm{~m}
$$

Number of reflections

Planar channeling onset at $n=13$

Other results

Crystal specifications to assist collimation in LHC
Axial channeling of high-energy protons

Radiation emitted by electrons and positrons in a bent crystal Axial channeling of negative particles Planar channeling and VR of negative particles MVR by different planes in one si-crystal for high-energy protons MVR by different planes in one si-crystal for negative particles Parametric X-rays produced by 400 GeV protons in a bent crystal

Probability of EM dissociation for well channeled ions Dechanneling length of high-energy negative particles

Focusing of 400 Gev Proton beam with bent crystals

Mirroring of 400 Gev Protons with ultra-thin straight crystal Comparison of MVR for positive and negative particles Multiple scattering on 400 GeV protons in bent si-crystals

Dechanneling of 400 GeV protons in a long bent si-crystals Performance of highly irradiated si-bent crystals
V.M. Biryukov et al., Nucl. Instrum. Methods Phys. Res. B 234 (2005) 23-30.
W. Scandale et al., PRL 101, 164801 (2008).
W. Scandale et al. PLB B 693 (2010) 545-550
W. Scandale et al., Phys. Rev. A 79, 012903 (2009).
W. Scandale et al., PLB B 680 (2009) 301-304

$$
\text { W. Scandale et al., PLB B } 681 \text { (2009) 233-236. }
$$

W. Scandale et al., PLB B 682 (2009) 274-277.
W. Scandale et al., EPL, 93 (2011) 56002 .
W. Scandale et al., PLB B 701 (2011) 180-185
W. Scandale et al., PHYSICAL REVIEW ST-AB16, 011001 (2013).
W. Scandale et al., PLB B 719 (2013) 70-73.
W. Scandale et al., PLB B 733 (2014) 366-372
W. Scandale et al., NIM B 414 (2018) 104-106
W. Scandale et al., PHYSICAL REVIEW ST-AB 21, 014702 (2018)
W. Scandale et al., NIM B 446 (2019) 15-18
W. Scandale et al., PLB B 734 (2014) 1-6
W. Scandale et al., Pis'mavZhETF,vol.101, iss.10,pp.755-760
W. Scandale et al., NIM B 402 (2017) 291-295
W. Scandale et al., Eur. Phys. J. C (2019) 79:993
W. Scandale et al., NIM B 438 (2019) 38-41
W. Scandale et al., Eur. Phys. J. C (2019) 79:933

Conclusive remarks

UA9 experiments in the North Area of the SPS have brought fundamental information on the interaction of high-energy particles with bent crystals.
In parallel UA9 has proposed, implemented and conducted experimental work on applications in high-energy accelerators:

- For crystal-assisted collimation in the SPS (see R. Rossi talk)
- For crystal assisted-collimation in the LHC (see S. Redaelli talk)
- For beam extraction assisted by bent-crystals (see F. Velotti talk)

[^0]: W. Scandale et al., REVIEW OF SCIENTIFIC INSTRUMENTS 79, 023303

