

Studies of ultra-high gradient acceleration in carbon nanotube arrays

Aravinda Perera and Javier Resta López
The University of Liverpool and Cockcroft Institute

Outline

- Introduction
- State-of-the-art
- Simulation models
- Experimental layout
- Summary and perspective
- Future plan

Introduction

Tesla cavity in DESY

DLA

PWFA

ACN

	Conventional RF cavity	Dielectric laser – driven acceleration (DLA)	Plasma wakefield acceleration (PWFA)	Solid–state plasma wakefield acceleration
Based on	Normal / superconducting cavity	Quartz / silicon structure	Gaseous plasma	Crystals, e.g. Silicon / nano-channels, e.g. CNT
Peak field limited by	Surface breakdown	Damage threshold	Wave breaking	Atomic lattice dissociation
Maximum achievable gradient	50 – 100 MV/m	~10 GV/m	~100 GV/m	~1 – 100 TV/m (prediction)

Using nanostructures

- Wakefield acceleration in porous nanomaterials
- Advantages of CNT w.r.t. natural crystals:
 - Higher acceptance: CNT channel size ~(1-100) nm; channel size for Si crystal ~ Å
 - Lower dechannelling rate
 - Lower stopping power
 - Significantly higher thermal and mechanical robustness
 - Great degree of dimensional flexibility
- Wakefield drivers:
 - Beam
 - High power laser

Porous alumina - 100 nm

CNT array
Michael De Volder et al.,
Uni. of Cambridge

State-of-the-art. Simulations

e-beam

 Beam-driven WA in a single CNT channel

Y. M. Shin et al., AIP Conf. Proc. 1812 (2017) 060009

A. Sahai et al., IJMP 34 (2019) 1943009

LWA in a single CNT channel

X. Zhang et al., PRST-AB 19 (2016) 101004

Beam-driven WA in CNT arrays

J. Resta-Lopez et al., IPAC2018

Prediction of 100-GV/m to TV/m fields

State-of-the-art. Simulations

Intense-laser driven nanotube based proton beam accelerator

M. Murakami, M. Tanaka., Appl. Phys. Lett. 102 (2013) 163101

Prediction of 100 TV/m fields

- Laser: 10-20 fs;
 I=10¹⁸ W cm⁻²
- Outer CNT (green)
 with Au atoms
 (yellow) chemically
 adsorbed
- Two inner bullet nanotubes made of H (red)
- Ionized electrons (white) are ejected
- A saddle-shaped
 Coulomb field is
 generated to squeeze
 and accelerate the
 bullet ions along the
 z-axis

State-of-the-art. Exp. proposals

Earlier experimental proposals

ASTA 50 MeV beamline @ Fermilab

Y. M. Shin et al.

 Coherent X-ray radiation from photo-excited CNT

Simulation studies

What do we want to simulate?

- Single- and multi-walled CNTs
 - Free electrons (ionised by laser or strong beam fields)
 - Quasi-free electrons (2D Fermi gas)
- Array of many such coupled CNTs suitable for channelling wide (micron-scale) beams

- Single channel model. Beam-driven.
- ullet Beam and CNT dimensions: parametrised as a function of λ_p .

- Carbon ions:
 - q = e (single-level ionisation);
 - $m_C \simeq 12 \, m_p$;

2D axisymmetric Free electron gas on CNT wall

[See A. Bonatto presentation. This workshop]

Single channel model. Beam-driven

Single channel model. Beam-driven. Wall thickness scan

Acc. gradient as a functions of the outer radius, keeping an inner radius $r_{in} = 0.1 \lambda_p$

CNT external radius in units λ_p

It seems that there is an optimal value for the thickness to excite the strongest E_z

 CNT array model, alternating hollow channels and plasma walls inside a vacuum chamber. 2D PIC simulations with EPOCH

Cartesian coordinates VACUUM array CNT **Driving bunch** VACUUM

[J. Resta-Lopez et al., IPAC2018]

Driving e-beam parameters:

Energy	$200~{ m MeV}$
Energy spread	1%
Bunch population	5×10^6
rms radius	$168(0.1c/\omega_p) \text{ nm}$
rms length	$840(0.5c/\omega_p) \text{ nm}$
peak density	10^{25} m^{-3}

Assuming:

Hollow radius: 20 nm Wall thickness: 40 nm

Wall plasma density: $n_0 = 10^{25} \text{ m}^{-3}$

2D PIC simulations with EPOCH

Linear (weak) driver. For beam density $n_b = 0.1n_0$

Assuming:

Hollow radius: 20 nm Wall thickness: 40 nm

Wall plasma density: n_0 =10²⁵ m⁻³

• For beam density $n_b = n_\theta$

Benchmarking:

2D PIC simulations with **VSim**

 $E_z \approx 40 \; \mathrm{GV/m}$

Assuming:

Hollow radius: 20 nm Wall thickness: 40 nm

Wall plasma density: $n_0=10^{25}$ m⁻³

• For beam density $n_b = n_0$ 2D PIC simulations with **EPOCH**

Transverse phase space. CNT array vs. uniform plasma

- CNTs can efficiently cool the transverse phase space of channelled beam particles in a similar way to natural crystals
- Focusing and collimation by transverse fields generated from the oscillating surface plasmon

More recent simulations.

[See A. Bonatto presentation. This workshop]

Multiple CNTs evenly spaced (wall thickness = qap = 40 nm):

More recent simulations.

[See A. Bonatto presentation. This workshop]

Towards CNT arrays

- Existing 2D and 3D PIC codes are either
 - Cartesian
 - Cylindrically symmetric (no good for azimuthal modes)
 - 3D Fourier-Bessel cylindrical grids about single axis (no good for arrays)
- If CNT walls are ionised:
 - Best choice: Cartesian 3D codes (quasi-static may be good enough for copropagating electrostatic modes)
- If CNT walls are unionised:
 - existing 3D PIC codes must be adapted to simulate bound electrons on multiple embedded 2D cylinders
 - Best choice: Cartesian 3D codes (probably)
 - we have modified the 3D EPOCH code to model nanotube wall electrons as plasma in a static positive "jellium" background

3D semi-rigid wall CNT model

Preliminary simulation results. EPOCH

[See A. Perera's poster for details. This workshop]

Electron currents in walls restricted to longitudinal and azimuthal directions (unless fully ionized)

3D CNT array model

Calculated density ~ 10²⁸ atoms/m³

Test beam facilities

Where a proof-of-concept might be performed (tbd). For example

Parameter	CLEAR (CERN)	CLARA (DL)	FLASHForward (DESY)*	PITZ (DESY)
Energy	200 MeV	250 MeV	400-600 MeV	21.5 MeV
Energy spread	< ±2%	±1%	0.2%	-
Trans. norm. emittance (rms)	< 20 mm-mrad	≤ 1 mm-mrad	x/y ~2.5/5 mm mrad	0.37 mm mrad
Bunch length (rms)	< 0.75 ps	0.1-0.25 ps (short pulse)	4 μm (12 fs)	14.5 ps
Bunch charge	0.6 nC	0.1-0.25 nC	0.2-0.3 nC	0.1 nC
Peak bunch density	~10 ²¹ m ⁻³	<~ 10 ²² m ⁻³	~10 ²⁴ m ⁻³	~10 ¹⁸ m ⁻³
Bunch spacing	0.667 ns		< 1 µs	-
Nb. of bunches	1-32-226	1	-	-
Repetition rate	[0.8, 5] Hz	10 Hz	1-10 Hz (macro) 0.04-3 MHz (micro)	10 Hz

^{*} EuPRAXIA, LWFA type beam parameters: 1 GeV case

Experimental layout

Phase 1: Beam-driven

Experimental layout

Investigate the tunability of a photo-excited CNT array to be used as compact X-ray source

Summary and perspective

- The use of solid nano-structures may open new possibilities to obtain high particle acceleration gradients beyond those provided by standard RF
- Assuming plasma wakefield excited by a driving bunch, preliminary simulation results show the possibility of obtaining longitudinal electric accelerating gradients > 10 GV/m
- Channelling and efficient cooling of transverse phase space
- New test beam facilities, such as CLEAR, CLARA, FLASHForward, etc.
 might offer the opportunity to carry out proof-of-concept tests of CNT based wakefield acceleration
- CNT structures open up exciting new avenues for compact particle acceleration and radiation sources

Future plan

- Simulation of multiple CNTs to investigate fields in CNT arrays
- Study of coupled-CNT operation
- Optimization studies of wall-thickness, nanotube radius crystalline geometry and array properties
- Establish a detailed experimental plan, considering available test beam facilities
- Collaborations

Special thanks to

Cristian Bontoiu, Volodymyr Rodin, Carsten P. Welsch, University of Liverpool

> Alex Bonatto, Guoxing Xia, University of Manchester

Thank you

Backup slides

Single channel model. Beam-driven. Reduced thickness

Single channel model. Beam-driven. Reduced thickness

 $\xi [\mu m]$

3D CNT array model

- Dimensions and density
 - with the C=C bond length taken as a = 0.1425 nm the atoms density can be calculated if one chooses an axial unit 3a long;

Figure 1.4 Distribution of Carbon atoms around the tube.

Figure 1.5 View of the Carbon atoms distributed in hexagons.

3D CNT array model

- Dimensions and density
 - volume of the inner tube is:

$$V = 2\pi \frac{D_i}{2} t \times 3a = 0.181 \, nm^3 \tag{1.1}$$

- density of atoms:

$$\rho = \frac{64 \text{ atoms}}{0.181 \text{ nm}^3} = 352.988 \times 10^{27} \frac{\text{atoms}}{\text{m}^3} \tag{1.2}$$

- all 10 layers have a volume of $v = 1.135 \,\mathrm{nm}^3$ and they contain

$$v \times \rho = 400.646 atoms \tag{1.3}$$

which yields a scaled down density of:

$$\frac{400.646 \ atoms}{v} = 13.559 \times 10^{27} \frac{atoms}{m^3} \tag{1.4}$$

Scattering studies

- 3D array of CNT made of usual Carbon
- Tube radius 50 nm
- Wall thickness 20 nm
- Length 2 μm
- Steps inside volume < 2 nm
- Geant4 QGSP BIC + EmDNA model

