





## Crystal-assisted positron source

X. Artru, I. Chaikovska, R. Chehab, M. Chevallier, Y. Han

## Why e+ sources are critical components of the FC Victorial Components of the FC Victorial Course



$$L = \frac{N_1 N_2 f n_b}{4\pi \sigma_x \sigma_y}$$

High luminosity at the future colliders => needs high average and peak e- and e+ currents and small emittances.

- e+ are produced within large 6D phase space (e+/e- pairs produced in a target-converter).
- **Current** => limited in conventional way by the target characteristics
  - Average energy deposition => target heating/melting
  - Peak Energy Deposition Density (PEDD): inhomogeneous and instantaneous energy deposition => thermo mechanical stresses due to temperature gradient
  - Thermal dynamics and shock waves
  - Fatigue limit resulting from cycling loading.
- **Emittance** => at the production 6D phase space is very large
  - After defined by the e+ capture system acceptance.



e+ source fixes the constraints for the peak and average current, the emittance, the damping time, the repetition frequency => Luminosity!

# What are the main challenges

- Toliot-Curie
- Laboratoire de Physique Positron emittance at the exit of the target,
- Positron emittance at the exit of the target, the AMD and the capture section at 200 MeV
- <u>High intensity</u>=> 1) number of e+/e- pairs: higher primary beam energy and intensity, rather thick targets-converter or photon radiators (channeling, undulators) + 2) capture system (B field and RF sections)
- <u>Emittances</u> => weak multiple scattering => towards thin targets and small beam sizes on the targets + capture system
- <u>Polarization</u> => need the circularly polarized photon beam (Compton scattering, helical undulator, polarized bremsstrahlung)
- Reliability and radiation environment => prevent target failure (heat & stress) as a function of primary beam size and power. Minimize, whenever possible, the radiation load on the environment. Ensure remote handling/target removal system.



Accepted e+ flux is a function of target + capture system + primary beam characteristics!

3

### Positrons sources: classical scheme line





High production e+ divergence => appropriate capture, focusing and post acceleration sections need to be integrated immediately after the target.

Goal: matching the e+ beam (with very large transverse divergence) to the acceptance of the pre-injector linac.



### Conventional positron target: bremsstrahlung and pair conversion

- Classical e+ source
- It was employed to produce e+ beam at the existing machines (ACO, DCI, SLC, LEP, KEKB...)

# Positron source performances



Demonstrated (a world record for the existing accelerators): SLC e+ source: ~0.08e14 e+/s

| Facility                          | PEP-II             | KEKB               | DAFNE                | BEPC                | LIL                  | CESR                 | VEPP-5             |
|-----------------------------------|--------------------|--------------------|----------------------|---------------------|----------------------|----------------------|--------------------|
| Research center                   | SLAC               | KEK                | LNF                  | IHEP                | CERN                 | Cornell              | BINP               |
| Repetition frequency, Hz          | 120                | 50                 | 50                   | 12.5                | 100                  | 60                   | 50                 |
| Primary beam energy, GeV          | 33                 | 3.7                | 0.19                 | 0.14                | 0.2                  | 0.15                 | 0.27               |
| Number of electrons per bunch     | $5 \times 10^{10}$ | $6 \times 10^{10}$ | $1.2 \times 10^{10}$ | $5.4 \times 10^{9}$ | $3 \times 10^{9}$    | $3 \times 10^{10}$   | $2 \times 10^{10}$ |
| Target                            | W-25Re             | $\mathbf{W}$       | W-25Re               | $\mathbf{W}$        | $\mathbf{W}$         | $\mathbf{W}$         | ${ m Ta}$          |
| Matching device                   | AMD                | QWT                | AMD                  | AMD                 | QWT                  | QWT                  | AMD                |
| Matching device field, T          | 6                  | 2                  | 5                    | 2.6                 | 0.83                 | 0.9                  | 10                 |
| Field in solenoid, T              | 0.5                | 0.4                | 0.5                  | 0.35                | 0.36                 | 0.24                 | 0.5                |
| Capture section RF frequency, MHz | S-band             | S-band             | S-band               | S-band              | S-band               | S-band               | S-band             |
| Positron vield, 1/GeV             | 0.054              | 0.023              | 0.053                | 0.014               | 0.0295               | 0.013                | 0.1                |
| Positron output, 1/s              | $8 \times 10^{12}$ | $2 \times 10^{11}$ | $2 \times 10^{10}$   | $2.5 \times 10^{8}$ | $2.2 \times 10^{10}$ | $6.6 \times 10^{10}$ | $10^{11}$          |

# Future Collider project challenges



|                               | SLC  | CLIC<br>(380 GeV) | ILC<br>(250 GeV) | LHeC (pulsed) | LHeC<br>(ERL)      | LEMMA | FCC-ee                         |
|-------------------------------|------|-------------------|------------------|---------------|--------------------|-------|--------------------------------|
| e- beam energy(GeV)           | 45.6 | 380               | 250              | 140           | 60                 | 45    | 45.6                           |
| Norm. hor. emitt. (mm.mrad)   | 30   | 0.92              | 5                | 100           | 50                 | 18    | 24.1                           |
| Norm. vert. emitt. (mm.mrad)  | 2    | 0.02              | 0.035            | 100           | 50                 | 18    | 89                             |
| Bunches/macropulse            | 1    | 352               | 1312             | 105           |                    |       | 2                              |
| Repetition Rate               | 120  | 50                | 5                | 10            | CW                 |       | 200 (Inj)                      |
| Bunches/second                | 120  | 17600             | 6560             | 106           | $20 \times 10^{6}$ |       | 16640                          |
| e+/second (10 <sup>14</sup> ) | 0.08 | 1.1               | 1.3              | 18            | 440                | 100   | 8.5×10 <sup>4</sup> (0.06@Inj) |
| Polarization                  | No   | No/Yes            | Yes              | Yes           | Yes                | No    | No                             |

- Linear Collider projects: high request for polarization, requested intensity should be produced in "one shot".
- *Circular Collider projects:* polarization is under discussion, requirements are relaxed due to stacking and top-up injection.
- *Muon colliders* (*LEMMA*):  $\sim$  1e16 e+/s to be defined based on the adopted baseline.

### Positrons sources: 'novel' schemes



Better solution: Two-stage process to generate the positron beam

*First stage*: γ-ray generation

Second stage: e-/e+ and  $\gamma$ -ray beams are separated and the latter is sent to the target-converter

The γ-rays can be generated by the following methods:

- Radiation from helical undulator
- Channeling radiation
- Compton scattering



Two targets are used: a *radiator* to produce the photons and a *converter* for the materialization of the photons in e+e- pairs

Charged particles are swept off => the deposited power and PEDD are strongly reduced

# Positron sources using channeling



### Originally proposed by LAL group + Xavier Artru (IPNL)

(R. Chehab et al., in Proc. of the 1989 IEEE Particle Accelerator Conf., 1989, pp. 283–285)

• **Hybrid scheme** is based on a relatively new kind of e+ source using the intense radiation emitted by high energy (some GeV) electrons channeled along a crystal axis => *channeling radiation*.

Radiator is an oriented crystal and e-/e+ pairs are generated in the amorphous converter.

#### Planar vs. Axial channeling:

- Axial potentials are generally 5 to 10 times stronger than planar potentials.
- As radiated energy is proportional to the square of the channeling field => axial channeling is preferred for  $\gamma$ -radiation in a positron source.
- W crystal: the potential depth  $U_0$  is of 1 kV at normal temperature. The angle of incidence of the e- on the atomic rows should be smaller than the Lindhard critical angle:  $\theta < \Psi c = [2U/E]^{1/2}$
- The frequency of the radiated photon is given approximately by  $\omega = 2\gamma^2 \Delta E_T$

#### @ 1GeV for W

- $\Psi c = 1.4 \text{ mrad}$
- $\Delta E_T$  is of some eV =>  $\omega \sim 40$  MeV

# Channeling vs. Bremsstrahlung

CLab Irène Joliot-Curie Laboratoire de Physique

- For targets of the same thickness there is an enhancement of *the soft photons* production in the crystal oriented on its <111> axis compared to the amorphous.
- *Soft photons* will generate the *soft positrons* => easier to capture by matching devices.
- There is a threshold in energy, for which the energy radiated by channeling becomes more important than that of bremsstrahlung.
- It depends on crystal and incident energy: for W, E > 700 MeV. For other crystals (Si, Ge, C(d)) the threshold is higher.

V N Baier, Katkov, V M Strakhovenko, 1986 Phys. Stat. Solidi B 133, 583

**Proof-of-principle experiment in Orsay (1992-1993):** observing radiation enhancement in a tungsten crystal oriented along the  $\langle 111 \rangle$  axis submitted to a 2 GeV electron beam.

X. Artru et al., NIM Section B, 119.1 (1996): 246-252.





# Positron Sources using channeling



• Thick crystals: radiation and conversion in the same target



• Hybrid scheme: thin crystal radiator & thick amorphous converter



• Optimized hybrid scheme: decrease of the deposited energy by sweeping off the e+/e- (from crystal)



Three approaches have been studied experimentally

# Positron Sources using channeling



### Crystal converter vs. Hybrid source

Several experiments have been carried out at CERN and KEK with different configuration.

### **Experiment WA103 at CERN**



- Both types of targets have been tested at CERN.
- The positron yield was the same for 8 mm crystal and [4 mm crystal + 4 mm amorphous converter]. There is an optimum thickness < 4 mm.
- Further calculations indicated  $d_{opt} < 2$  mm. For future hybrid sources based on W crystals, at the same incident energy (< 10 GeV) we shall consider 1-2 mm thick crystals (cf. ILC and CLIC).



Fig. 12. The positrons energy spectra for the 1 kG magnetic field normalised per 1 incident electron. The spectra are not corrected by the reconstruction efficiency and the detector acceptance. The dark points represent the 8 mm crystal target. The open points, the "4 mm crystal target + 4 mm amorphous target". The histogram is the 8 mm crystal simulation. The electron energy is 10 GeV.

X. Artru et al., NIMB 240 (2005) 762

## Positron Sources using channeling



### Advantages of the optimized hybrid scheme

- Thin crystal => higher enhancement, more  $\gamma$  produced per e- => less energy deposition => less heating => higher potentials
- Thick amorphous converter: high conversion  $\gamma \rightarrow e^-/e^+$

• Distance between radiator and converter: use dipole magnet to sweep off e+/e- after the crystal => less energy deposition, weaker density: avoids high values of PEDD

distance few meters

W GeV e

<1 1 1> W

Crystal

distance few meters

W

Amorphous

X. Artru et al. NIM B 266 (2008) 3868-3875

This scheme is proposed to be used for the Future Linear Colliders.

A baseline design for the CLIC positron source.

# Positron Sources using channeling. distance few meters.

Optimization of the radiation characteristics for the positron production

- Crystal properties
  - Crystal quality: crystals with good mosaicity (typically 400-500 μrad FWHM)
  - Crystal kind and orientation: high Z materials and axial channeling. Tungsten W => high atomic potential (1 keV) at <111> orientation.
  - *Thickness of the crystal:* optimum thickness is between 1-2 mm for  $E \le 10$  GeV
- Thickness of the amorphous target (high Z material): compromise between the requested yield and the amount of deposited energy => what is essential is the accepted positron yield
- **Distance between the radiator and converter:** 1) installation of a sweeping magnet 2) increase the size of the photon beam => contribute to lower the deposited energy density
- **Incident e- beam:** some GeV (to get  $U_{ch}>> U_{bremss}$ ), U is the energy radiated. Incident electron beam with weak divergence  $\theta < \Psi c_{.}$

### Reliability of the crystal for e+ production



### Effect of crystal temperature on the positron yield

➡ With temperature, crystal strings undergo thermal vibrations => reduction of the available potential for channeled particles.

- Taking into account the U(T), simulations have been undertaken with a W crystal 8 mm thick (<111> axis) and  $E_{e-}=10$  GeV.
- **Result:** variation of ~ 600 degrees in the crystal decreased the positron yield by 15 %.

### To avoid the potential decrease with increasing temperature:

- It is better to use thin crystals to limit the amount of deposited energy
- the crystal must be cooled (system of many crystals on the translation stage of a goniometer with additional cooling).

X.Artru et al. Part. Accel., Vol.59 (1998) 19-41



FIGURE 9 Continuum potentials for the (111) axis of the tungsten crystal. The temperatures are expressed in K.

### Reliability of the crystal for e+ production



Radiation damage of the crystal

Radiation damage experiment at SLAC (1996)

In order to study the radiation damages on the W crystal, a thin crystal (0.3 mm thick) has been installed upstream of the SLC e+ target and irradiated during 6 months.



TV camera

Figure 3: The SLC experimental set-up

- The SLC beam: E = 29.5 GeV, average intensity:  $2.5 \times 10^{10}$  e-/pulse, Frequency: 10 and 30 Hz, Integrated intensity (6 months):  $1.2 \times 10^{19}$  e-, Spot area on the crystal:  $6.2 \text{ mm}^2$ , Total fluence:  $2 \times 10^{20}$  e-/cm<sup>2</sup>
- <u>Results:</u> No damage was observed (same rocking curve after and before irradiation). No modification in the mosaic spread of the crystal was observed. The damage threshold should be higher (for e-).

This fluence corresponds to the level of appearance of damages on a Si crystal hitted by 28 GeV and 450 GeV protons (BNL & Fermilab)

Reliability of the amorphous target-converter!

# Hybrid e+ source: applications



KEKB/SuperKEKB => Crystal e+ source @KEKB during 1 year.

Experimental R&D program on hybrid scheme

**CLIC** => Hybrid scheme

FCC-ee => Hybrid or conventional scheme

**LEMMA** => Hybrid scheme is under consideration



Recent idea: to replace the compact target-converter by a **granular** one made of **small spheres** => *new option for the amorphous converter* 



Granular target can provide **better heat dissipation** associated with the ratio Surface / Volume of the spheres and the **better resistance to the shocks** (studies are ongoing).

## Crystal e+ source for KEKB



W crystal target has been successfully employed at the e+ source of the KEKB for 1 year (2006)

- The crystal thickness was 10.5 mm, primary e- beam 4 GeV
- The enhancement strongly depends on the crystal thickness (the thicker the crystal, the lower enhancement wrt amorphous target having the same thickness).

#### • Results:

- At KEKB, the e+ yield increased by ~25% compared to that for a conventional tungsten plate with a thickness of 14 mm.
- The steady-state heat load on the crystal target decreased by ~20%.
- After a two-month operation, no degradation of the e+ production efficiency was observed.



FIG. 2. (Color) Positron-production efficiencies measured for the tungsten crystal as a function of the crystal thickness (see [13] in detail). The incident electron energy and positron momentum were 4 GeV and 20 MeV/c, respectively. The solid curves through the data are gamma-function fits of the data.

T. Suwada et al. PRST-AB 10 (2007) 073501



The experimental activities have restarted in KEK (SuperKEKB injector linac) in 2015/2016. **Goals**: e+ yield and target temperature measurements to compare different targets (Bulk & Granular) => e+ source performances.

#### Experimental conditions:

- Energy = 7-8 GeV, single bunch (Frep =1 to 50 Hz), Charge = 1-2 nC
- Emittance (norm)  $\sim 150(H)/63(V)$  mm mrad, beam divergence < 0.1 mrad
- Crystal W: 1mm thick, <111> orientation
- Granular targets: 4, 6 and 8 layers. Bulk target (reference): 8 mm thick
- Temperature rise on the converter: thermocouples



Ø 2.2 mm







11/03/2020 I. Chaikovska IJCLal 18



#### Photons and e+ detection:

• **Photon detection:** CVD diamond detector 500  $\mu$ m thick, 4x4 mm<sup>2</sup>. Weak interaction efficiency (~0.3 %) but enough  $\gamma$  rays (>10<sup>11</sup> per shot)

• Positron detection: produced e+ are analysed by a spectrometer (60° bending magnet) at 5-20

MeV/c and then detected by 5 mm lucite Cherenkov detector

The e+ detection system is simulated by using the GEANT4. Typical momentum acceptance is 2.6% (FWHM) at the positron momentum 20 MeV/c. Collaboration with V. Rodin (KNU-Ukraine, Cockcroft Institute-UK).

### Temperature measurements:

- Standard K-type thermocouples (with area < 1 mm²) attached to the backside of the targets (glued by an epoxy thermal conductive paste)
- The output has been calibrated (0 -100°C) and sent by a 40 m long extension cables to the experimental room

vsl

















#### STEREOGRAPHIC PROJECTION

<110> axis is at 35.2 degrees from <111> and <100> axis is at 54.7 degrees from <111>



To align <111> crystal axis with respect to the electron beam, a 2D angular scan has been performed.

Data suggest an increase by a factor of two in the photon production => the simulations and further analysis of the background are under way to describe the experimental data.



Bunch-by-bunch temperature rise des 2 Infinis



Positron yield: once the crystal axis was aligned with the e- beam, e+ yield was measured systematically for various conditions in hybrid and conventional schemes.

The studies are ongoing



Temperature measurements: it was performed in order to estimate the heat load in the bulk and granular converters.

Bunch-by-bunch temperature rise => PEDD information.

Temperature at equilibrium => total energy deposition.

### CLIC Positron Source



Separate injector complex to produce positron beam



- Electron Driver: 5 GeV beam, NC L-band TW
   352 bunches/pulse, 1 nC
- e+ target: 1.5 mm crystal + 3.7X0 (1.3 cm) thickness, (avg power dep ~ 10 kW, PEDD ~25 J/g)
- Capture: Flux Concentrator Bmax = 3 T
- e+ polarization: No

CLIC e+ source design update (compared to CDR): target layout, new beam transport and acceleration design from the target to the predamping ring => final e+ yield  $\sim$ 1.7 e+/e-, PEDD =  $\sim$ 25 J/g.

Hybrid scheme (CLIC CDR)

11/03/2020

e<sup>-</sup> Damping Ring



## FCC-ee positron source





12 kW

Beam power

<sup>\*</sup>Alternative option: 20 GeV linac as the FCC-ee injector => higher energy for e+ production

The complete filling for Z running (most demanding) => Requirement @ DR:  $\sim 2.1 \times 10^{10} \text{ e}^+/\text{bunch } (4.3 \text{ nC})$   $\sim 0.5 \text{ e}^+/\text{e}^-$  without safety factor

## LEMMA: positrons for muons



Positron-driven scheme: Low EMittance Muon Accelerator (LEMMA)

Goal: low emittance muon beams from direct pair production.  $e^+e^- \rightarrow \mu^+\mu^-$  Max efficiency ~10-5.

Muons produced at  $\sqrt{s}$  around the  $\mu^+\mu^-$  threshold ( $\sqrt{s} \approx 0.212 GeV$ ) in asymmetric collisions (corresponds to about 45 GeV e+ beam interacting with target).

Initial injection: the e+ source has to provide trains of 1000 bunches with  $5x10^{11}$  e+/bunch to inject in the DR at 5 GeV.

But the e+ source needed to replace the e+ lost in the muon production process is a real challenge (very short time available ~ 50 ms).

=> Flux of <u>10<sup>15</sup> · 10<sup>16</sup> e+/s</u> is needed (experience from ILC/CLIC + R&D program on new targets).

