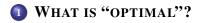
PRELIMINARY STUDIES ON INJECTION OPTIMISATION

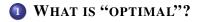

Simon Albright & Elisabeth Renner

BE-RF-BR

December 5, 2019

S. Albright & E. Renner (BE-RF-BR)

INJCTION OPTIMISATION

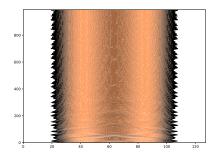

2 PRELIMINARY STUDIES

S. Albright & E. Renner (BE-RF-BR)

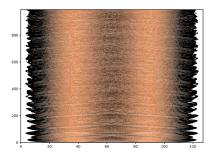
INJCTION OPTIMISATION

DECEMBER 5, 2019 2 / 10

2 PRELIMINARY STUDIES


• General requirement for beam dynamics studies is "optimal" injection parameters and voltage functions:

- General requirement for beam dynamics studies is "optimal" injection parameters and voltage functions:
 - Available parameters at injection:
 - Energy spread
 - 2 Bunch length
 - 3 $V_{h=1}$
 - V_{h=2}
 - (eventually) V_{h=3}

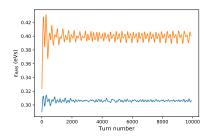

- General requirement for beam dynamics studies is "optimal" injection parameters and voltage functions:
 - Available parameters at injection:
 - Energy spread
 - Bunch length
 - 3 $V_{h=1}$
 - V_{h=2}
 - (eventually) $V_{h=3}$
 - Measurables:
 - Bunch length
 - 2 Line density
 - Energy spread
 - Longitudinal emittance (matched, RMS, 90%)
 - Filamentation
 - 6 ...

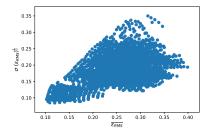
- General requirement for beam dynamics studies is "optimal" injection parameters and voltage functions:
 - Available parameters at injection:
 - Energy spread
 - Bunch length
 - 3 $V_{h=1}$
 - V_{h=2}
 - (eventually) V_{h=3}
 - Measurables:
 - Bunch length
 - 2 Line density
 - Energy spread
 - Longitudinal emittance (matched, RMS, 90%)
 - Filamentation
 - 6 ...
- What factor, or combination of factors (in which case with what weighting), matters most?
- Does "optimum" depend on beam type?

Very different parameters and results, but which is better?

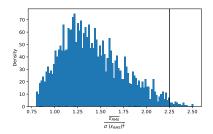
- Injected length: 700 ns
- Energy Spread: 850 keV
- V_{h=1}: 9.3 kV
- V_{h=2}: 7.6 kV
- Result: Fairly smooth, but quite small

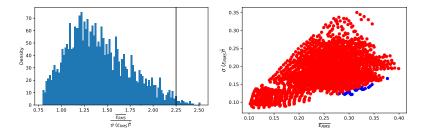
- Injected length: 700 ns
- Energy Spread: 1050 keV
- V_{h=1}: 6.7 kV
- V_{h=2}: 10.2 kV
- Result: Lots of filamentation, but large


2 PRELIMINARY STUDIES


S. Albright & E. Renner (BE-RF-BR)

- For different beam types a longitudinal figure of merit that maps onto important beam parameters (e.g. blow-up) is needed
 - Is it better to have smaller with less filamentation, or larger with more filamentation?
 - Should a small longitudinal loss be accepted?
 - Are there other factors?


- For different beam types a longitudinal figure of merit that maps onto important beam parameters (e.g. blow-up) is needed
 - Is it better to have smaller with less filamentation, or larger with more filamentation?
 - Should a small longitudinal loss be accepted?
 - Are there other factors?
- Large parameter scan with BLonD used to investigate possible figures of merit for HL-LHC type beam:
 - Length: 500 ns \rightarrow 750 ns
 - Energy spread: 500 keV \rightarrow 1100keV
 - $V_{h=1} + V_{h=2}$: 10 kV \rightarrow 20 kV
 - $V_{h=1}/(V_{h=1}+V_{h=2}): 0.3 \rightarrow 0.6$
 - \approx 11k simulations of 10 ms on a 160 MeV flat bottom with space charge (run time \approx 20 minutes each)


- Two parameters of interest:
 - Level of filamentation: Measured by standard deviation of ε_{RMS} over first 1k turns

- Two parameters of interest:
 - Level of filamentation: Measured by standard deviation of ε_{RMS} over first 1k turns
 - 2 Longitudinal size: Measured by average ε_{RMS} over last 1k turns
- The perfect bunch would have no filamentation, and be very large (bottom right corner)

- Two parameters of interest:
 - Level of filamentation: Measured by standard deviation of ε_{RMS} over first 1k turns
 - 2 Longitudinal size: Measured by average ε_{RMS} over last 1k turns
- The perfect bunch would have no filamentation, and be very large
- Take all points with $\overline{\varepsilon_{RMS}}/\sigma(\varepsilon_{RMS}) > 2.25$ (empirically chosen)

- Two parameters of interest:
 - Level of filamentation: Measured by standard deviation of ε_{RMS} over first 1k turns
 - 2 Longitudinal size: Measured by average ε_{RMS} over last 1k turns
- The perfect bunch would have no filamentation, and be very large
- Take all points with $\overline{\varepsilon_{RMS}}/\sigma(\varepsilon_{RMS}) > 2.25$ (empirically chosen)
- Red points are "bad", blue points are "good"

1) What is "optimal"?

2 PRELIMINARY STUDIES

S. ALBRIGHT & E. RENNER (BE-RF-BR)

- Simulation results in a SWAN project (if you want access let me know)
- Selection of possible parameters based on different figures of merits identified for simulation in 6D, preliminary combinations:

•
$$V_{h=1} = 9.5 \text{ kV}, V_{h=2} = 9.5 \text{ kV}, 600 \text{ ns}, 1.1 \text{ MeV}$$

- Relationship between longitudinal measureables and transverse parameters to be used as feedback for defining "optimal" conditions
- After identifying optimum on a flat bottom the question becomes how to get it up the ramp

Any suggestions/ideas/thoughts/proposals/etc welcome and appreciated