

Brightness Curve Simulations

F. Asvesta, F. Antoniou, H. Bartosik

S. Albright, C. Bracco, E. Renner

Overview

- Working Point Choice
 - Beam Loss Mechanism
 - Brightness Curve at 160 MeV
 - Summary & Outlook

Working Point Choice : <u>Recap of Half-Integer Studies</u>

Below the half integer:

- 1. <1% losses regardless of error
- 2. Smaller beta-beating for all errors
- **3. Overall blow-up smaller** for the same loss limit

Questions raised in the previous meeting

Could we allow **losses above the half integer** if we getter smaller emittances?

Could we allow **losses** of uncaptured beam to get smaller emittances **below the half integer**?

Losses From Uncaptured Beam

Loss Mechanism

- Particles left out of the bucket move with the beam in the flat bottom
- During the ramp uncaptured beam doesn't change energy resulting to different orbit and tunes
- Uncaptured particles get lost on the vertical aperture as they get captured by the half integer resonance

Lost Particles up to 5k Turns

Losses From Uncaptured Beam

Loss Mechanism

- Particles left out of the bucket move with the beam in the flat bottom
- During the **ramp** uncaptured beam doesn't change energy • resulting to different orbit and tunes
- Uncaptured particles get lost on the horizontal aperture

7500 10000 12500 15000 17500 2000

Brightness Curve at 160 MeV

→ Setup for **0% losses**:

Larger longitudinal line density

→ Setup allowing **1-2% losses** of uncaptured beam:

Lower longitudinal line density

No Beam Loss Setup

Simulation Parameters									
Linac4									
ε _x /ε _y	0.4 mm mrad								
Ι	25 <i>m</i> A								
Chopping Factor	0.6								
dE _{rms}	0.35 MeV								
PSB									
Cycle	Flat 1								
Injected Intensity [10 ¹² ppb]	1	1.5	2	2.5	3	3.5			
Accumulation [Turns]	11	16	22	27	32	38			
Simulation time	20 kTurns								
Working Point	$Q_{\rm x}$ =4.40 , $Q_{\rm y}$ =4.45								
Quad Error	k1=0.00315 (2.5% Beta-beat) /0.0189 (15% Beta-beat)								

No losses

- The brightness depends on the quadrupolar error
 - → how well we can compensate the beta beating
- Beta-beating $\leq 2.5\%$
 - Marginally on the **PSB-LIU** target
- Beta-beating $\leq 15\%$
 - Marginally on the **PS-LIU Injection** target

Allowing ~1-2% Beam Loss Setup

Simulation Parameters										
Linac4										
ε _x /ε _y	0.4 mm mrad									
Ι	25 <i>m</i> A									
Chopping Factor	0.7									
dE _{rms}	0.44 MeV									
PSB										
Cycle	Flat 1									
Injected Intensity [10 ¹² ppb]	1	1.5	2	2.5	3	3.5				
Accumulation [Turns]	10	14	19	23	28	32				
Simulation time	20 kTurns									
Working Point	$Q_{\rm x}$ =4.40 , $Q_{\rm y}$ =4.45									
Quad Error	k1=0.00315 (2.5% Beta-beat) /0.0189 (15% Beta-beat)									

Uncaptured Beam!!!!

 \sim 1-2% losses

- The **brightness** depends on the quadrupolar error
 - \rightarrow how well we can **compensate the beta** beating
- The lower longitudinal line density • contributes to **better brightness**
- **Below** the **LIU** target for the errors ۲ tested

Uncaptured

Beam!!!!

Summary & Outlook

- Working points **below the half integer** are preferable as they allow better control of the beam regardless of the quadrupolar error
- Losses from resonances cannot be tolerated as they continue throughout the cycle
- Losses of uncaptured beam could be tolerated (<1-2% level) as the larger longitudinal line density favors brightness
- The brightness curve at 160 MeV gives some margin for additional error studies only in the case of lower longitudinal line density, allowing 1-2% off-bucket losses

Future Studies

- Benchmark the simulations at 50 MeV using data of previous years
- Track using a more **realistic longitudinal space charge model**
- Use a more **realistic longitudinal distribution** for better assessing capture losses
- Use a more realistic machine model including non-linear errors

17

Thank you!

Back-up

Small Error

F. Asvesta et al. LIU-PSB BD WG

19