Progress with QPR at CERN

Lorena VEGA CID

Section: BE/RF/SRF

Supervisors: G. Vandoni, W. Venturini

On behalf of all the colleagues from BE-RF, TE-VSC and TE-CRG contributing to the QPR studies.

Outline

- 1. Thin film studies on 2019
- 2. Commissioning of new QPR
- 3. Future work

Thin film studies on 2019

Type of test

- QPR
- New QPR
- 1.3 GHz cavity

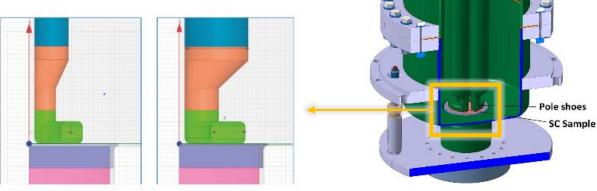
Thin film research lines

- Nb
 - ECRHiPIMS
- □ Nb₃Sn
- Bulk Nb

Institutes

- CERN
- Jlab
- HZB

Test	Starting date	Type of test	Type of coating	Fabrication
1	24 January	★ 1.3 GHz cavity	▲ HiPIMS Nb	CERN
2	08 March	★ 1.3 GHz cavity	▲ HiPIMS Nb	CERN
3	20 March	★ New QPR	▲ Bulk Nb	JLab
4	05 June	★ QPR	▲ Nb ₃ Sn	CERN
5	18 June	★ QPR	▲ ECR Nb	JLab
6	17 July	★ QPR	▲ HiPIMS Positive pulse Nb	CERN
7	24 July	★ New QPR	▲ Bulk Nb	HZB
8	08 August	★ QPR	▲ HiPIMS Positive pulse Nb (second part)	CERN
9	11 September	★ QPR	▲ Nb ₃ Sn	CERN
10	17 October	★ QPR	▲ Bulk Nb	HZB
11	21 November	★1.3 GHz cavity	▲ HiPIMS Nb	CERN+JLab



Commissioning of new QPR

Main design modifications

In 2017 a new version of the QPR was built: An electromagnetic and mechanical redesign of the existing QPR to optimize the measurement range and resolution

Figure	Original design	New design
Res. Freq. [MHz]	399.7/803.3/1211	398.1/806.2/1224
H_{ss}/H_{pk}	0.87	0.91
B_{ss}/E_{pk} [mT/MV/m]	4.00/4.00/4.22	5.28/5.28/5.40
Av. field on surface [m	T] 16.4	22.5
B_{edge} [mT]	1.5	2.5

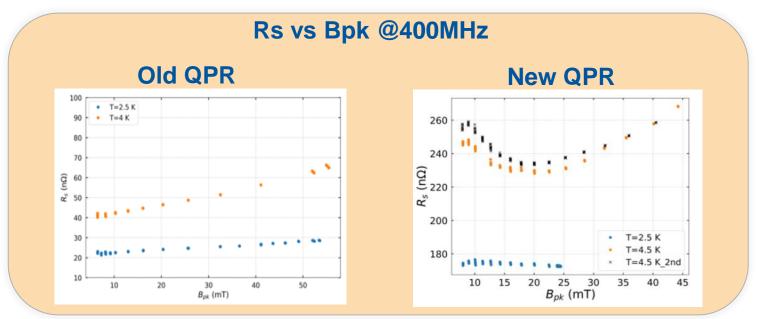
Pumping ports

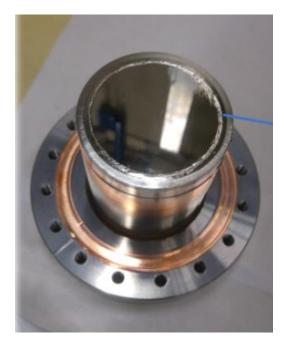
RF ports

Hollow rods

Figure 6: Original and new pole shoe geometry.

Modification	Impact	Benefits
↓ gap	↑ Hs/Hpk	Higher field is illuminated in the sample: More homogeneus field distribution over the sample, better resolution
↑ diameter of rods	↑ Bs/Epk	Electric field is reduced in the rod's surface: Lower risk field emission
↑ width of rods	↑ Average Bs	More homogeneus field distribution over the sample: Better resolution
Material	↑ RRR	Better cooling: Lower the risk of thermal breakdown


V. del Pozo Romano et al, "Redesign of CERN's Quadrupole Resonator for Testing of Superconducting Samples", in *Proc. 18th Int. Conf. on RF Superconductivity (SRF'17)*, Lanzhou, China, July 2017, https://doi.org/10.18429/JACoW-SRF2017-TUPB016, 2018.

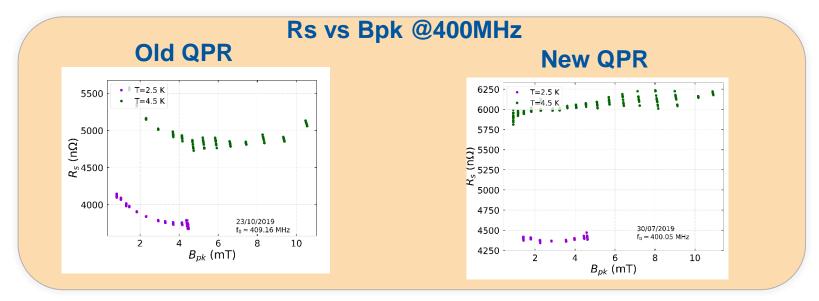


Commissioning of new QPR

First benchmark with bulk Nb sample

A bulk Nb sample RRR>100 (JN1) was tested with old and new QPR for commissioning (April 2019).

General comments (courtesy: M. Arzeo):


- Output: Overestimation of surface resistance with new QPR.
- <u>Possible cause</u>: In new QPR the magnetic field is more distributed in the sample surface. The weld might be affecting the dissipation.
- <u>To do next</u>: Measure another bulk Nb sample without welds on the top surface to confirm the theory.

Commissioning of new QPR

Second benchmark with bulk Nb sample

- A second bulk Nb sample has been tested with old and new QPR.
- The sample was produced in HZB and it was e-beam welded on the Nb cylinder support.


- Output: Discrepancies in the results with old and new QPR.
- <u>Possible cause</u>: The sample quality was very low, which could be attributed to the high roughness of the surface (Ra~30-40 um). Dissipation was evident even at low fields. Results cannot be fully trusted as there might be heat leaks.
- <u>To do next</u>: Repeat process using a good sample for benchmarking.

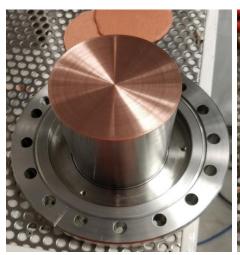
4th SRF Workshop

Preparation of a HZB QPR sample within EASITrain program

Defects observation

Few bright spots observed

Optical microscopy
Courtesy of A.-T. Fontenla


Massive defects. Covered by the coating.

Courtesy of G. Rosaz

Preparation of a HZB QPR sample within EASITrain program

Coating

Sample striped

- SUBU (20min)
- HPWR
- Coating HiPIMS / -50V bias.
 Final thickness ~ 8um

QPR sample holder

QPR sample mounted

After coating

A happy ESR ©

- Ready for RF testing (planned at CERN beginning 2020)
- It will be used for benchmarking of old and new QPR as part of the commissioning campaign.

Future work

	December		January		February		March	
HiPIMS coated 1,3 GHz cavity								
QPR Nb coating (JLab)								
QPR Nb coating (HZB)								
New QPR commissioning								
To be added								

Conclusions

- Several QPR measurements have been performed during 2019.
- New QPR commissioning is ongoing.
- Next sample for benchmarking has been prepared within the EASITrain program.
- We are ready to measure one sample for ARIES.
- Busy schedule, so it is useful to have sufficient notice time to be prepared for the test.

