Usage of GPU for online data processing:
The experience of ALICE and LHCb

David Rohr, Daniel Hugo Campora Perez
drohr@cern.ch, dcampora@cern.ch

CERN EP Software Seminar
11.12.2019
Outline

• Overview of upgrades of LHC and the experiments:
 • What are the upcoming challenges for ALICE and LHCb?
 • What do the online processing approaches from ALICE and LHCb have in common?

• Short introduction to GPUs:
 • Why should we use GPUs and what can we gain?

• The experience of ALICE

• The experience of LHCb

• Conclusion
COMPUTING FOR THE UPGRADES OF THE LHC EXPERIMENTS
LHC Upgrade Schedule

- **LS2** LHC upgrade: heavy ion rate: >50 kHz in Run 3 (>10 kHz now), boost pp collision rate by small factor.
- **LS3** LHC upgrade: HL-LHC era, boost pp collision rate by factor 5 – 7 in Run 4.
 - Highest pp luminosity only for ATLAS and CMS – their detectors are upgraded for Run 4 accordingly.
 - ALICE and LHCb perform a major upgrade for Run 3 now.
 - Run 3 is adiabatic increase for ATLAS / CMS, with no increase for ALICE.
Online / Offline Computing in ALICE / LHCb in Run 3

• LHCb
 • First phase of trigger (HLT1) during data taking.
 • Second phase of trigger (HLT2) when there is no beam.

Run 2

40 MHz bunch crossing rate

L0 Hardware Trigger: 1 MHz readout, high $E_T/\rho \pi$ signatures
- 450 kHz h^\pm
- 400 kHz μ/μ
- 150 kHz e/γ

Software High Level Trigger
- Partial event reconstruction, select displaced tracks/vertices and dimuons
- Buffer events to disk, perform online detector calibration and alignment
- Full offline-like event selection, mixture of inclusive and exclusive triggers

Common strategy:
- 2 phase processing with disk buffer
- Full processing in software

11.12.2019
David Rohr, drohr@cern.ch
Online / Offline Computing in ALICE / LHCb in Run 3

- **LHCb**
 - First phase of trigger (HLT1) during data taking.
 - Second phase of trigger (HLT2) when there is no beam.

Run 2
- 40 MHz bunch crossing rate

Run 3
- 30 MHz inelastic event rate (full rate event building)

Common strategy:
- 2 phase processing with disk buffer
- Full processing in software
Online / Offline Computing in ALICE / LHCb in Run 3

- **LHCb**
 - First phase of trigger (HLT1) during data taking.
 - Second phase of trigger (HLT2) when there is no beam.

- **ALICE**
 - **Synchronous** (online) processing for data compression and calibration.
 - When not taking data → **Asynchronous** (offline) processing with final reconstruction.

Common strategy:
- 2 phase processing with disk buffer
- Full processing in software

Run 2
- 40 MHz bunch crossing rate
- L0 Hardware Trigger: 1 MHz readout, high E/π/μ signatures
 - 450 kHz h$^+$
 - 400 kHz μ/µ
 - 150 kHz e/γ
- Partial event reconstruction, select displaced tracks/vertices and dimuons
- Buffer events to disk, perform online detector calibration and alignment
- Full offline-like event selection, mixture of inclusive and exclusive triggers
- 12.5 kHz (0.6 GB/s) to storage

Run 3
- 30 MHz inelastic event rate (full rate event building)
- Full event reconstruction, inclusive and exclusive kinematic/geometric selections
- Buffer events to disk, perform online detector calibration and alignment
- Add offline precision particle identification and track quality information to selections
- Output full event information for inclusive triggers, trigger candidates and related primary vertices for exclusive triggers
- 2-10 GB/s to storage

Data links from detectors
- > 3.5 TB/s

Run 3 farm
- Synchronous processing
 - Local processing
 - Event / timeframe building
 - Calibration / compression
- Asynchronous processing
 - Reprocessing with full calibration
 - Full reconstruction

Disk buffer
- Compressed Raw Data

Reconstructed Data
- Permanent storage

Readout nodes
- > 600 GB/s

11.12.2019
David Rohr, drohr@cern.ch
Comparison of processing, data rates and sizes

<table>
<thead>
<tr>
<th></th>
<th>ALICE (Pb-Pb)</th>
<th>LHCb</th>
<th>ATLAS</th>
<th>CMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run</td>
<td>Run 2</td>
<td>Run 2</td>
<td>Run 2 / 3</td>
<td>Run 2 / 3</td>
</tr>
<tr>
<td>Luminosity</td>
<td>~10 kHz</td>
<td>50 kHz</td>
<td>2.14*10³⁴</td>
<td>5–7.5 *10³⁴</td>
</tr>
<tr>
<td>Hardware trigger</td>
<td>500 Hz – 2 kHz</td>
<td>50 kHz continuous</td>
<td>1 MHz</td>
<td>1 MHz (can evolve to 4)</td>
</tr>
<tr>
<td>HLT Accept</td>
<td>No rejection</td>
<td>No HLT</td>
<td>12.5 kHz</td>
<td>1 kHz (< 2)</td>
</tr>
<tr>
<td>Raw Data Rate into HLT</td>
<td>45 GB/s (w. ZS)</td>
<td>3 TB/s (w. o. ZS)</td>
<td>55 GB/s</td>
<td>2.6 TB/s (5.2 TB/s L1)</td>
</tr>
<tr>
<td>Data stored</td>
<td>~10 GB/s</td>
<td>Up to 100 GB/s</td>
<td>0.6 GB/s</td>
<td>5 GB/s</td>
</tr>
<tr>
<td>Data Buffer</td>
<td>~1 PB DAQ buffer to Tier0</td>
<td>~60 PB (one year of compressed data), up to 100 GB/s</td>
<td>~12 PT</td>
<td>1.5 TB events + 48 hours to Tier 0</td>
</tr>
</tbody>
</table>

- **ALICE** will take 100x more events, but only minimum bias, all other experiments collect 10x more statistics.
 - ALICE investigates the option to run in a software triggered mode at higher rate during some time of a year.
 - **ALICE and LHCb** process all data in software, use large disk buffers to hold large amount of (compressed raw data) for processing in the online farm when there is no beam.
 - **ATLAS and CMS** have much higher luminosity, full readout of front-end at bunch-crossing rate and processing in software not feasible and not cost effective.
 - **ALICE** features high data rate during Pb-Pb (due to TPC), collects large amount of data in only few weeks.
Comparison of ALICE and LHCb data processing in Run 3

- Both experiments do full two-stage online processing at bunch crossing rate, with disk buffer and offline quality output.
 - **Input data rates:** >3TB/s for both – zero-suppressed for LHCb (factor 4) – raw for ALICE with zero-suppression in FPGA down to ~1TB/s.
 - **Calibration:** Full calibration available for Asynchronous stage / HLT2.
 - Online calibration with feedback loop tested in the ALICE HLT in Run 2, under study for Run 3, Velo alignment calibration in LHCb HLT1.
 - **Event building:** A set of input nodes (FLP / DAQ) receives the detector links via PCIe40 FPGA card.
 - ALICE sends time frames (TF) of 23ms from the FLP to Event Processing Nodes, where events are merged, build, and reconstructed.
 - LHCb first builds the events internally inside the DAQ via a fast network, then ships them to the Event Filter farm via a broad network.
 - Network transfers synchronized via software to avoid congestion.
 - Many events are coalesced (similar to TF).
 - Could switch to similar event building as ALICE if needed.
 - **Cluster:** Input: ~170 DAQ nodes @ LHCb, ~200 FEP nodes @ ALICE
 - Processing: ~2000 Event Filter nodes @ LHCb, ~1500 GPUs in EPNs @ ALICE.
 - **Disk buffer:** LHCb buffers up to 3 weeks, exploits turnaround, TS, MD periods, runs MC at YETS. ALICE buffers 1 year, exploits also YETS.
 - ALICE compresses data in synchronous stage, compressed raw data stored to disk buffer and to tape is identical.
 - ALICE has highest data taking output rate of up to 100 GB/s, but only during beginning of Pb-Pb fill.
 - Pb-Pb data parked for processing on disk buffer for 1 year. Compute budget for 2 full reconstructions passes within the year.
 - pp data taking and asynchronous reconstruction in between / in parallel.
 - Part of asynchronous reconstruction can run on GRID.
 - Online farm must be capable to process this data in the synchronous stage.
 - LHCb stores raw data after HLT1 trigger to disk buffer, second trigger rejection in HLT2.
 - LHCb has higher data rate from HLT1 to disk buffer, but not for final storage.
POTENTIAL OF GPUS
Introduction

- Moore’s Law:
- Manufacturing
- size, frequency,
- and performance
- grow exponentially.
- Frequency began
- to stagnate 2003.
Introduction

• Moore’s Law:
• Manufacturing
• size, frequency,
• and performance
• grow exponentially.

• Frequency began
• to stagnate 2003.

• GPUs are faster
• than CPUs.
Why GPUs

• GPUs use their silicon for ALUs
• CPUs use their silicon mainly for caches, branch prediction, etc.
Why GPUs

• CPUs are designed for fast execution of serial programs.
 • Clocks have reached a physical limit.
 → Vendors use parallelization to increase performance.
• GPUs are designed for parallel execution in the first place.
 • The „only“ limit for GPU performance is heat dissipation.
 • GPU clocks are usually lower than they could be.
 – This saves power
 – Hence more hardware can be powered in parallel
 → Better overall performance
Introduction

NVIDIA GTX280 GPU
GPU Programming example (stupid addition of 2 vectors)

```cpp
#include <vector>
#define SIZE 1024
int main(int, char**) {
    std::vector<float> hostArray1(SIZE), hostArray2(SIZE);
    for (int i = 0; i < SIZE; i++) { hostArray1[i] = 2 + 3 * i; hostArray2[i] = 4 + 5 * i; }
    for (int i = 0; i < SIZE; i++) { //Computation
        hostArray2[i] += hostArray1[i];
    }
    return 0;
}
```

On the CPU

Host

allocate

initialize

compute
#include <vector>
#define SIZE 1024

__global__ void testKernel(float* vec1, const float* vec2, int size) {
 int myId = threadIdx.x + blockIdx.x * blockDim.x;
 if (myId >= size) return;
 for (int i = myId; i < size; i += blockDim.x * gridDim.x) {
 vec1[i] += vec2[i];
 }
}

int main(int, char**) {
 std::vector<float> hostArray1(SIZE), hostArray2(SIZE);
 float *devicePtr1, *devicePtr2;
 for (int i = 0; i < SIZE; ++i) {
 hostArray1[i] = 2 + 3 * i;
 hostArray2[i] = 4 + 5 * i;
 }
 cudaMalloc(&devicePtr1, hostArray1.size() * sizeof(hostArray1[0])); //Allocate memory on the device
 cudaMalloc(&devicePtr2, hostArray2.size() * sizeof(hostArray2[0]));
 cudaMemcpy(devicePtr1, hostArray1.data(), hostArray1.size() * sizeof(float), cudaMemcpyHostToDevice); //Copy buffers to the device
 cudaMemcpy(devicePtr2, hostArray2.data(), hostArray2.size() * sizeof(float), cudaMemcpyHostToDevice);
 testKernel<<<(SIZE + 127) / 128, 128>>>(devicePtr1, devicePtr2, SIZE); //Launch kernel to add the vectors (add vector 2 onto vector 1)
 for (int i = 0; i < SIZE; ++i) {
 //We do the same computation on the host
 hostArray2[i] += hostArray1[i];
 }
 //We copy back the first vector, which contains the result (cudaMemcpy implies synchronization)
 cudaMemcpy(hostArray1.data(), devicePtr1, hostArray1.size() * sizeof(float), cudaMemcpyHostToDevice);
 cudaFree(devicePtr1); //Free CUDA memory
 cudaFree(devicePtr2);
 bool ok = true; //Compare results
 for (int i = 0; i < SIZE; ++i) {
 if (hostArray1[i] != hostArray2[i]) {
 printf("Error at position %d: %f != %f\n", i, hostArray1[i], hostArray2[i]);
 ok = false;
 }
 }
 if (ok) printf("Result OK!\n");
 return 0;
}
TPC Tracking performance

- Speed-up normalized to single CPU core.
 - Red curve: algorithm speed-up.
 - Other curves: GPU v.s. CPU speed-up corrected for CPU resources.
 - How many cores does the GPU replace.

- Significant gain with newer GPU (blue v.s. green).

- GPU with Run 3 algorithm replaces > 800 CPU cores
 Running Run 2 algorithm. (blue * red).
 (at same efficiency / resolution).

- We see ~30% speedup with new GPU generation (RTX 2080 v.s. GTX 1080)
EXPERIENCE OF THE ALICE EXPERIMENT
ALICE in Run 3: 50 kHz Pb-Pb

Record large minimum bias sample.
- All collisions stored for main detectors → no trigger.
- Continuous readout → data in drift detectors overlap.
- 100x more events, 100x more data.
- Cannot store all raw data → online compression.
→ Use GPUs to speed up online processing.

- Overlapping events in TPC with realistic bunch structure @ 50 kHz Pb-Pb.
- Timeframe of 2 ms shown (will be 10 – 20 ms in production).
- Tracks of different collisions shown in different colors.
Step 1 (Seeding)

- Step 1: Combinatorial seeding
- Searches for three clusters composing straight line
- Concatenates straight lines
- Only step with non-linear runtime.

Strategy: deal with the combinatorics as early as possible.
Seed everywhere, each track has at least some seedable part, no need to be 100% efficient.
Step 2 (Track Following)

• Step 2 (Simplified Kalman Fit):
• Track parameters are fit to the seed.
• Trajectory is extrapolated to adjacent TPC row.
• Cluster closest to extrapolated position is found.
• Fit is improved with new cluster.
TPC Data Compression

- TPC Data compression involves 3 steps:
 1. Entropy reduction (Track model, variable precision, etc.)
 2. Entropy encoding (Huffman, Arithmetic, ANS)
 3. Removal of tracks not used for physics.

- Steps 1 + 2 implemented for Run 2.
 - Current compression factor **8.3x**.
 - Prototype for Run 3 achieves factor **9.1x** (TDR assumed 10x).

- **Step 3 must close the gap to the required compression in Run 3.**
 - Remove clusters from background / looping tracks.
 - Adjacent to low-p_T track < 50 MeV.
 - Adjacent to secondary leg of low-p_T track < 200 MeV.
 - Adjacent to any track with $\phi > 70^\circ$ in the fit.
 - Protect clusters of physics tracks.
 - Not Adjacent to any physics-track (except $\phi > 70^\circ$).

- In addition:
 - Use reconstructed track quantities to reduce entropy.

11.12.2019
David Rohr, drohr@cern.ch
Online / Offline Computing in ALICE in Run 3

- ALICE computing strategy for Run 3
 - On-site server farm for **synchronous** (online) processing.
 - When not taking data → used for **asynchronous** (offline).

- Partial ITS + TPC + TRD tracking for TPC calibration
 - reduced statistics sufficient
 (TPC calibration based on matching of TPC / ITS / TRD tracks)
- Other detectors without significant CPU load

- Full TPC tracking for TPC compression
 - cluster to track residuals → better entropy coding
 - removal of tracks not used for physics
 - Entropy coding for other detectors

Final reconstruction pass with final calibration
Tracking in ALICE in Run 3

- **Bulk of computing workload:**
 - **Synchronous**
 - >90% TPC tracking / compression
 - Low load for other detectors
 - **Asynchronous**
 - TPC among largest contributors
 - Other detectors also significant
Baseline solution
(almost available today):
TPC + part of ITS tracking on GPU

- **Mandatory** solution to keep up with the data rate online.
- **Defines** number of servers / GPUs.

Optimistic solution
(what could we do in the ideal case):
Run most of tracking + X on GPU.

- Extension of baseline solution to make best use of GPUs.
 - Ideally, **full barrel tracking** without ever leaving the GPU.
 - In the end, we will probably be somewhere in between.

Asynchronous phase should make use of the available GPUs.
- Available in the O² farm anyway.
- Future HPC / grid sites may have GPUs.

ALICE GPU processing strategy

- **Synchronous**
 - >90% TPC tracking / compression
 - Low load for other detectors

- **Asynchronous**
 - TPC among largest contributors
 - Other detectors also significant

Bulk of computing workload:

11.12.2019
David Rohr, drohr@cern.ch
Reconstruction steps on GPU (Barrel Tracking)

- **Status of reconstruction steps on GPU:**
 - All TPC steps during synchronous reconstruction are *required* on the GPU.
 - Synchronous ITS tracking and TPC dE/dx in good shape, thus considered *baseline* on the GPU.
 - Remaining steps in tracking chain part of *optimistic scenario*, being ported step by step to GPU.
 - Porting order follows topology of chain, to avoid unnecessary data transfer for ported steps – current blocker is **TPC ITS matching**.
Status of reconstruction steps on GPU:

- Baseline scenario: all steps almost ready

GPU barrel tracking chain

- TPC Cluster Finder
 - In operation
 - Nearly ready
 - Development not started
- TPC Track Finding
- TPC Track Merging
- TPC Track Fit
- TPC dE/dx
- TPC Track Model Compression
- TPC <10MeVc Identification
- TPC Cluster removal

Common GPU Components:
- GPU API Framework
- Sorting
- Material Lookup
- Memory Reuse

New requirement arose few months ago, since clusterizer does not fit in FPGA.
Reconstruction steps on GPU (Barrel Tracking)

- Status of reconstruction steps on GPU:
 - Different reconstruction steps enabled in **synchronous** and **asynchronous** reconstruction.

GPU barrel tracking chain

<table>
<thead>
<tr>
<th>Component</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPC Cluster Finder</td>
<td>In operation</td>
</tr>
<tr>
<td>TPC Track Finding</td>
<td>Nearly ready</td>
</tr>
<tr>
<td>TPC Track Merging</td>
<td>Being studied</td>
</tr>
<tr>
<td>ITS Vertexing</td>
<td>Development not started</td>
</tr>
<tr>
<td>TPC Track Finding</td>
<td>Common GPU Components:</td>
</tr>
<tr>
<td>ITS Track Finding</td>
<td>GPU API Framework</td>
</tr>
<tr>
<td>ITS Track Fit</td>
<td>Sorting</td>
</tr>
<tr>
<td>TPC ITS Matching</td>
<td>Material Lookup</td>
</tr>
<tr>
<td>TPC Track Fit</td>
<td>Memory Reuse</td>
</tr>
</tbody>
</table>

Synchronous chain

- All events
- Only few % of events

- TPC Track Model Compression
- TPC Cluster removal
- TPC Entropy Compression
- Global Fit
- TRD Tracking
- TOF Matching
- TPC Calibration
- ITS Afterburner
- V0 Finding

TRD tracking / TPC calibration: see poster of Ole Schmidt

Space point calibration of the ALICE TPC with track residuals
11.12.2019

David Rohr, drohr@cern.ch

Status of reconstruction steps on GPU:

- Different reconstruction steps enabled in *synchronous* and *asynchronous* reconstruction.

GPU barrel tracking chain

- **TPC Cluster Finder**
- **TPC Track Finding**
- **TPC Track Merging**
- **TPC Track Fit**
- **TPC dE/dx**
- **TRD Tracking**
- **TOF Matching**
- **V0 Finding**
- **TPC Calibration**

Asynchronous chain

- **Global Fit**
- **Gpu API Framework**
- **Sorting**
- **Material Lookup**
- **Memory Reuse**

Common GPU Components:

- **GPU API Framework**
- **Sorting**
- **Material Lookup**
- **Memory Reuse**

TPC Calibration:

- TPC <10MeV/c identification

TRD tracking / TPC calibration:

- Space point calibration of the ALICE TPC with track residuals

GPU barrel tracking chain:

- **part of baseline scenario**
- **part of optimistic scenario**

GPU Entropy Compression

GPU Cluster removal
Reconstruction steps on GPU (Barrel Tracking)

• Status of reconstruction steps on GPU:
 • All TPC steps during synchronous reconstruction are required on the GPU.
 • Synchronous ITS tracking and TPC dE/dx in good shape, thus considered baseline on the GPU.
 • Remaining steps are part of an optimistic scenario, being ported step by step to GPU.
 – Porting order follows topology of chain, to avoid unnecessary data transfer for ported steps – current blocker is TPC ITS matching.

Strategy:

• Start with standalone TPC and ITS tracking.
 – Standalone ITS tracking needed since TPC tracks lack absolute time.
 – ITS tracking uses vertexer as first step.
 – TPC tracking has no vertex constraint, starts with segment tracking in individual TPC sectors, than merges the segments and refits.
• ITS and TPC tracks are matched, fixing the time for the TPC.
• The afterburner propagates unmatched TPC tracks into the ITS and tries to find matching hits of short tracks not found in ITS standalone tracking.
• Tracks are extrapolated outwards into the TRD, once the time is fixed.
 – TRD standalone tracking and matching (like for ITS) is less efficient due to many fake TRD tracklets.
• Optionally, after TRD tracks can be extrapolated to TOF.
• Global refit uses the information from all detectors.
• V0 finding
• In the synchronous phase, the TPC compression chain starts after the TPC standalone tracking in parallel:
 • Clusters not used in physics are removed, depending on the strategy (see later) this might require extra steps for identification and rejection of very low p_T clusters below 10 MeV/c.
 • Track model (and other steps) reduce the entropy for the final entropy encoding.
 • Final entropy encoding using ANS. Not clear yet whether this will run on GPU efficiently. Alternatively, transport entropy-reduced clusters to host and run entropy encoder there.

Strategy:
With more tasks to the GPU,

- Avoid GPU/Host copies.
- Intermediate steps must run on GPU. (Running only the track fit produces infeasible overhead.)
All intermediate shared buffers on GPU.
- Keep the component structure
- Create a super-component that runs everything at once on GPU.
Approach for Run 3

TPC Transformation Component

TPC Cluster Transformation

TPC Track Finder

CA Track Seeding

Kalman Track Following

GPU Buffer Management

TPC CA Tracker Component

TPC CA Global Merger Component

In-Sector Merging

Between-Sector Merging

Final TPC Track Fit

TPC Global Merger

Shared Buffer

Shared Buffer

Shared Buffer

Shared Buffer

TPC/ITS Tracker Component

TPC/ITS Tracker Component

TPC Prolongation to ITS

TPC / TRD Matching

GPU Tracking Super-Component (Super-Device)

Shared Buffer

Shared Buffer

Shared Buffer

Shared Buffer

Final TPC / TRD / ITS Track Fit & dE/dx

Shared Buffer

Shared Buffer

Shared Buffer

Shared Buffer
Memory requirements

• **ALICE reconstructs timeframes (TF) independently** (~10 – ~20 ms; 128 – 256 orbits; ~500 – ~1000 collisions).
 - One TPC drift time of data not reconstructible at TF border (~ 90 us) → < 1 % of statistics lost (< 0.5 % for 20 ms).
 - Timeframe should fit in GPU memory. If not, could use kind of ring buffer, or reduce TF length to 128 orbits.
 - Trying to avoid the ring buffer approach, could be added later if needed.
• **Custom allocator:** grabs all GPU memory, gives out chunks manually, memory will be reused when possible.
 - Classically: reuse memory between events, collisions are not that large.
 - ALICE reuses memory between different algorithms in a TF, possibly also between independent collisions.
 - Some memory must persist during timeframe processing.

Diagram:

- **TPC Hits 1**
- **Non-persisting input data**
- **Memory**
 - **TPC cluster finder**
 - **TPC Hits 1**
 - **TPC raw data can be removed after clusterization, memory will be reused.**
 - **TPC raw data can be removed after clusterization, memory will be reused.**

Legend:
- Persistent data
- Non-persisting input data
Memory requirements

- **ALICE reconstructs timeframes (TF) independently (~10 – ~20 ms; 128 – 256 orbits; ~500 – ~1000 collisions).**
 - One TPC drift time of data not reconstructible at TF border (~ 90 us) → < 1 % of statistics lost (< 0.5 % for 20 ms).
 - Timeframe should fit in GPU memory. If not, could use kind of ring buffer, or reduce TF length to 128 orbits.
 - Trying to avoid the ring buffer approach, could be added later if needed.

- **Custom allocator:** grabs all GPU memory, gives out chunks manually, memory will be reused.
 - Classically: reuse memory between events, collisions are not that large.
 - ALICE reuses memory between different algorithms in a TF, possibly also between independent collisions.
 - Some memory must persist during timeframe processing.

![Memory Diagram]

Persistent data
- TPC Hits 1
- TPC Hits 2

Non-persistent scratch data for algorithms
- Memory is reused, multiple inputs are queued.

Non-persisting input data
- TPC Raw 2
- TPC Raw 3

Memory is reused, multiple inputs are queued.
Memory requirements

- ALICE reconstructs timeframes (TF) independently (~10 – ~20 ms; 128 – 256 orbits; ~500 – ~1000 collisions).
 - One TPC drift time of data not reconstructible at TF border (~ 90 us) \rightarrow < 1 % of statistics lost (< 0.5 % for 20 ms).
 - Timeframe should fit in GPU memory. If not, could use kind of ring buffer, or reduce TF length to 128 orbits.
 - Trying to avoid the ring buffer approach, could be added later if needed.
- Custom allocator: grabs all GPU memory, gives out chunks manually, memory will be reused when possible.
 - Classically: reuse memory between events, collisions are not that large.
 - ALICE reuses memory between different algorithms in a TF, possibly also between independent collisions.
 - Some memory must persist during timeframe processing.
Memory requirements

• ALICE reconstructs timeframes (TF) independently (~10 – ~20 ms; 128 – 256 orbits; ~500 – ~1000 collisions).
 • One TPC drift time of data not reconstructible at TF border (~ 90 us) → < 1 % of statistics lost (< 0.5 % for 20 ms).
 • Timeframe should fit in GPU memory. If not, could use kind of ring buffer, or reduce TF length to 128 orbits.
 • Trying to avoid the ring buffer approach, could be added later if needed.
• Custom allocator: grabs all GPU memory, gives out chunks manually, memory will be reused when possible.
 • Classically: reuse memory between events, collisions are not that large.
 • ALICE reuses memory between different algorithms in a TF, possibly also between independent collisions.
 • Some memory must persist during timeframe processing.

Persistant data

• TPC Hits 1
• TPC Hits 2
• TPC Hits 3
• TPC Hits 4
• ITS Hits
• TPC Tracks
• ITS Tracks

Non-persistant input data

• Scratch
• Scratch

Input data may also be persistent, ITS hits are reused in the final fit.
Memory requirements

- ALICE reconstructs timeframes (TF) independently (~10 – ~20 ms; 128 – 256 orbits; ~500 – ~1000 collisions).
 - One TPC drift time of data not reconstructible at TF border (~ 90 us) → < 1 % of statistics lost (< 0.5 % for 20 ms).
 - Timeframe should fit in GPU memory. If not, could use kind of ring buffer, or reduce TF length to 128 orbits.
 - Trying to avoid the ring buffer approach, could be added later if needed.
- Custom allocator: grabs all GPU memory, gives out chunks manually, memory will be reused when possible.
 - Classically: reuse memory between events, collisions are not that large.
 - ALICE reuses memory between different algorithms in a TF, possibly also between independent collisions.
 - Some memory must persist during timeframe processing.

Persistent data

- TPC Hits 1
- TPC Hits 2
- TPC Hits 3
- TPC Hits 4
- ITS Hits
- TPC Tracks
- ITS Tracks
- Compressed TPC Hits

Non-persistent scratch data for algorithms

- Memory
- Scratch
- Non-persistent output

Non-persisting input data

- Available memory for scratch buffers decreases, but most memory is needed at the beginning for TPC clustering and tracking.

- Gaps can appear when size is not known exactly in advance.
- Minor problem with time frames since most fluctuations average out.
- Could compact the memory but probably not needed.

Some output can be moved to the host immediately, and the memory reused.
Memory requirements

- **ALICE reconstructs timeframes (TF) independently** (~10 – ~20 ms; 128 – 256 orbits; ~500 – ~1000 collisions).
 - One TPC drift time of data not reconstructible at TF border (~ 90 us) \(\rightarrow \) < 1 % of statistics lost (< 0.5 % for 20 ms).
 - Timeframe should fit in GPU memory. If not, could use kind of ring buffer, or reduce TF length to 128 orbits.
 - Trying to avoid the ring buffer approach, could be added later if needed.
- **Custom allocator**: grabs all GPU memory, gives out chunks manually, memory will be reused when possible.
 - Classically: reuse memory between events, collisions are not that large.
 - ALICE reuses memory between different algorithms in a TF, possibly also between independent collisions.
 - Some memory must persist during timeframe processing.

<table>
<thead>
<tr>
<th>Persistent data</th>
<th>Non-persistent scratch data for algorithms</th>
<th>Non-persisting input data</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPC Hits 1</td>
<td>TPC Tracks</td>
<td>TPC Raw 1</td>
</tr>
<tr>
<td>TPC Hits 2</td>
<td>ITS Hits</td>
<td></td>
</tr>
<tr>
<td>TPC Hits 3</td>
<td>ITS Tracks</td>
<td></td>
</tr>
<tr>
<td>TPC Hits 4</td>
<td>Matches</td>
<td></td>
</tr>
<tr>
<td>TPC Tracks</td>
<td>Scratch</td>
<td></td>
</tr>
<tr>
<td>ITS Hits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITS Tracks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matches</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPC Hits 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPC Tracks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITS Hits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITS Tracks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matches</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPC Hits 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPC Tracks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITS Hits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITS Tracks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matches</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPC Hits 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPC Tracks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITS Hits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITS Tracks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matches</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TPC ITS Matching

Preload TPC raw data of next TF before current TF is finished.
Memory requirements

Work in Progress

• **ALICE reconstructs timeframes (TF) independently (~10 – ~20 ms; 128 – 256 orbits; ~500 – ~1000 collisions).**
 • One TPC drift time of data not reconstructible at TF border (~90 us) → < 1 % of statistics lost (< 0.5 % for 20 ms).
 • Timeframe should fit in GPU memory. If not, could use kind of ring buffer, or reduce TF length to 128 orbits.
 • Trying to avoid the ring buffer approach, could be added later if needed.

• **Custom allocator:** grabs all GPU memory, gives out chunks manually, memory will be reused when possible.
 • Classically: reuse memory between events, collisions are not that large.
 • ALICE reuses memory between different algorithms in a TF, possibly also between independent collisions.
 • Some memory must persist during timeframe processing.

• **Estimated maximum memory needed during important for 10 ms TF (*2 for 20 ms):**
 • TPC Cluster finder: ~3 GB (+ input / scratch data, which is pipelined)
 • TPC Transformation: 12.1 GB
 • TPC Sector tracker: ~14.6 GB (including persistent memory from previous steps)
 • TPC Merger / track fit: 14.1 GB
 • TPC Compression: 12.9 GB
 → Later steps do not scale their scratch memory with TPC input → less memory intensive.

→ **16 GB GPU will suffice for 10 ms TF (unclear for 12 GB after optimizations).**
 • 8 GB insufficient for 10 ms TF, 20 ms TF needs 32 GB, alternatively ring buffer.
Performance Tuning

• **GPUs of different vendor’s / generation’s might favor different tuning.**
 • Many algorithms have tunable parameters (for processing speed).
 • We implemented most features such, that they can be switched off.
 – Worst case, at compile time via preprocessor definition.

• **One example: Distribution of tracks among GPU threads during track following:**
 • Illustration of active GPU threads over time (time on y-axis).
 • Number of average idle threads reduced by factor ~3, but large overhead for rescheduling.
 • Yields ~50% speedup on some GPUs, but becomes even slower on others.

• **For new GPUs:**
 • Run a benchmark with a parameter range scan to find best settings.
 • After 3 iterations (GPU generations), we got good results out of the box.
• **Handling of asynchronous computation / data transfers**

 • **1st iteration (Run 1 HLT):** Split event in chunks, to pipeline CPU processing, GPU processing, and PCIe transfer.

 • **2nd iteration (Run 2 HLT):** Processing of two events in parallel on the GPU concurrently.

 -- ~20\% faster than first version – GPUs have become wider and this exploits the parallelism better.

 -- Not possible during Run 1 due to GPU limitations at that time.

 -- We still kept the pipeline-scheme within each event, to maximize performance.

 • **3rd iteration (Run 3):** Go back to the old scheme from Run 1 – with time frames instead of events.

 -- Time frames are large → avoid keeping multiple in memory.

 -- Enough parallelism inside one time frame.
Compatibility with several GPU frameworks

- Generic common C++ Code compatible to CUDA, OpenCL, HIP, and CPU (with pure C++, OpenMP, or OpenCL).
 - OpenCL needs clang compiler (ARM or AMD ROCm) or AMD extensions (TPC track finding only on Run 2 GPUs and CPU for testing).
 - Certain worthwhile algorithms have a vectorized code branch for CPU using the Vc library.
 - All GPU code swapped out in dedicated libraries, same software binaries run on GPU-enabled and CPU servers.

```
#include "Algorithm.hxx"

class FilterBase {
    virtual void fitTracks(int n) {
        // Logic for fitting.
        // N is the number of tracks.
    }

    // Other member functions...
};

// CUDA specific code...

// OpenCL specific code...
```

```
libCUDA

libOpenCL

linked to GPU
shared object file
```
Compatibility with several GPU frameworks

- Generic common C++ Code compatible to CUDA, OpenCL, HIP, and CPU (with pure C++, OpenMP, or OpenCL).
 - OpenCL needs clang compiler (ARM or AMD ROCm) or AMD extensions (TPC track finding only on Run 2 GPUs and CPU for testing).
 - Certain worthwhile algorithms have a vectorized code branch for CPU using the Vc library.
 - All GPU code swapped out in dedicated libraries, same software binaries run on GPU-enabled and CPU servers.

- Screening different platforms for best price / performance.
 (including some non-competitive platforms for cross-checks and validation.)
 - CPUs (AMD Zen, Intel Skylake)
 C++ backend with OpenMP, AMD OCL
 - AMD GPUs
 (S9000 with OpenCL 1.2, MI50 / Radeon 7 / Navi with HIP / OCL 2.x)
 - NVIDIA GPUs
 (RTX 2080 / RTX 2080 Ti / Tesla T4 with CUDA)
 - ARM Mali GPU with OCL 2.x
 (Tested on dev-board with Mali G52)

- Optimize TCO (faster GPUs → less latency → smaller buffers).
EXPERIENCE OF THE LHCb EXPERIMENT