

Rucio for CMS

D. Ciangottini, K. Ellis, F. Garzón, Y. Guo, C. Huang, R. Lopez, I. Mandrichenko, D. Mielaikaite, S. Piperov, N. Smith, <u>E. Vaandering</u>

Overview

- CMS data management needs and data model
- Helm and kubernetes setup
- First steps of transition
- Large n-files & large dataset tests
- CTA and tape testing
- Other areas of work
- Suggestions and next steps

CMS Data Management Needs

- Current statistics on our data storage and movement
 - Stored on tape O(100 PB) and disk O(50 PB) at 50+ sites
 - Per day transfers ~1 PB, 1 M files (combined user, production)
- Numbers stay more or less constant for next 7-8 years, go up 50x in 2027 and beyond
- Primary data management is done by PhEDEx
 - Each site typically hosts a PhEDEx agent to manage its own data. Also manages local tape
 - ★ Requires non-trivial effort at each of our sites
 - Maintains a database of the desired states (blocks at sites) and issues FTS commands to achieve it
 - PhEDEx is aging and would not survive the HL-LHC era without major effort
- A higher layer, Dynamo, monitors popularity of data and, based on rules, makes subscriptions to dynamically distribute popular data, cleanup unpopular
- Separate physics meta-data catalog (DBS)
- July 2018 Made a decision to adopt Rucio before Run3 starts

CMS vs. Rucio Data models

- CMS data stored in a three tiered structure:
 - Files target size 4 GB
 - Blocks usually about 100 files, designed to be a unit that can be stored and transferred at one site
 - Dataset some number of blocks, has a physics meaning (often stored all at a site, but no necessarily)
 - All many:one maps, not many:many (like rucio)
 - Not perfect but fits OK into Rucio model:
 - ★ CMS Dataset Rucio Container
 - ★ CMS Block Rucio Dataset
- CMS has a single namespace of data with different types of data in different places of this namespace
 - Use a (potentially) complicated map of LFN (logical) to PFN (physical) namespaces
 - We use Rucio's plugin and RSE attributes to implement this

CMS Rucio Server at CERN

- Based on Docker, Kubernetes (k8s), Helm, OpenStack, CERN Oracle
 - Very collaborative effort with ATLAS
 - Helm enables minimal config changes for CMS
 - Zero to operating cluster is ~30 minutes (tested regularly)
 - Effort in CMS to get other web-facing services on k8s and OpenStack
 - ★ Some differences but lots of shared knowledge, e.g. interface to CERN monitoring layer
- Allows us to have production and testbed on a shared set of resources
 - Developer, testbed, production instances all will be identical except for scale
 - ★ Integration is on production hardware
- Rucio server and all rucio daemons are operating in k8s
 - Liveness checks now give automatic restart, possibility for load detection with automatic scale-out/in
 - Added monitoring, logging, proxy renewal, synchronization fed back to official Helm charts as appropriate
 - All Cron Jobs also running and managed by kubernetes (no special servers)

Kube-eagle monitoring + Grafana

√ CPU

Node CPU ▼

Node		Requested Cores	Limit Cores	Allocatable Cores	CPU Reserved	CPU Burstable	CPU Usage ▼
cmsrucioint2-4w6yuqmymkgh-minion-0		2.84	5.70	4.00	71.00%	142.50%	64.50%
cmsrucioint2-4w6yuqmymkgh-master-0	9 9	0.30	0.10	2.00	15.00%	5.00%	49.35%
cmsrucioint2-4w6yuqmymkgh-minion-2		3.12	4.10	4.00	78.00%	102.50%	46.40%
cmsrucioint2-4w6yuqmymkgh-minion-3		2.38	5.46	4.00	59.50%	136.50%	30.53%
cmsrucioint2-4w6yuqmymkgh-minion-5		3.72	3.80	4.00	93.00%	95.00%	29.20%
cmsrucioint2-4w6yuqmymkgh-minion-4		0.22	0.30	4.00	5.50%	7.50%	27.75%

NanoAOD transition plan

- NanoAOD is CMS's smallest data format: Few kB/event. 100TB for all Runs, versions
- Goal: transition all management of NanoAOD to Rucio as a test case.
 - Good candidate; not read in production
- Step 1: Sync all data on NanoAOD from PhEDEx to Rucio
- Step 2: Develop Rucio subscriptions and rules to distribute NanoAOD to test space
 - Done as a "million file test." Not used in production: dedicated test name space
- Step 3: Publish NanoAOD directly into Rucio, Rucio as the full data location store
 - Sync non-NanoAOD data from PhEDEx; all tools (DAS, CRAB, WMAgent) will lookup in Rucio
 - Rucio distributes NanoAOD with subscriptions and/or rules
 - Dynamo and PhEDEx no longer manage NanoAOD
- Currently preparing for this last step

Million File Test

- Did this test twice on two different Rucio instances
- Make a total of 5 copies of all NanoAOD
 - 1 copy in Americas, Asia/Russia, and 1/2 of Europe. 2 copies in other 1/2 of Europe
 - Regions were defined by bandwidth between sites
- Total stats replicated were 450k files 299k datasets. Total size 320 TB
 - Also did a cleanup campaign of the first test
- We did this with Rucio subscriptions: Generate placement rules based on dataset metadata
 - Subscriptions are still generating rules as new blocks/datasets are added to Rucio by production
- Workflow:
 - Transmogrifier scans datasets, creates rules
 - Rule engine demands new replicas (minimal to satisfy rules)
 - Conveyor submits transfer requests to FTS

Rule creation during and after test

Transmogrifier updates about 10k datasets/hour

FTS submissions and scale up

 Submission rate to FTS at 5 Hz. One line change to bring on another submitter, momentarily doubled to 10 Hz, then kept up

Bandwidth by hour during tests

Rucio (cyan) throughput is clearly visible during test period

Million file test within CMS

Volume is low as expected since NANOAOD files are small (as are user files for ASO)

Rucio as part of production

- A couple of non-traditional sites where we can't/prefer not to set up PhEDEx endpoints
- Currently NERSC and Spark cluster at Vanderbilt University
- Placing data to be used by production
- Especially at NERSC, large file sizes. Latest "test" peaked at >10 Gb/s from several sources
- Combined with small file tests, convinces us our setup can transfer at the scale needed for CMS

Eric Vaandering for CMS Rucio Team

Rucio Update 2019-04

Rate to NERSC

Just a fraction of the total CMS rate

Rucio with CTA (CERN Tape)

- CTA is the new Tape Service at CERN (and soon at RAL)
- Small scale tests of CTA successful
- Large scale tests still coming
- Need to put multihop into production automating manual process to bridge connectivity

"Multi-hop"

Consistency checking for CMS

- CMS has an existing consistency checking with our existing system using xrootd for remote listing
- Need to replicate this with Rucio to deal with two problems:
 - Data which is supposed to be at a site, but is not missing data
 - Data which is at a site and is not supposed to be (any more) dark data
- CMS work plan ongoing
 - Use XRootD for creating Site Reports remotely adapt existing mechanism to CERN infrastructure and Rucio input expectations
 - Dump Rucio DB reports via Sqoop
 - Adapt to Auditor format; Use Auditor for the comparison
 - Adapt Auditor code to handle native CMS LFN/PFN paths.
- Would like to do these comparisons weekly and on k8s cluster

Vaandering for CMS Rucio Team Rucio Update 2018-10

Suggested areas for improvement

Monitoring and messaging

- Aware of a move from statsd to prometheus
- More probes runnable by default? Remove ATLAS specific probes. Database choice may be an issue
- Would be helpful to have options to easily plug into existing monitoring infrastructure
 - ★ Differences between CERN-ATLAS, CERN-CMS, Fermilab, presumably others
- Messaging is similar. Interest by CMS in NATS, a high-performance messaging queue
- Messaging server in kubernetes setup for simple installations?
 - ★ Already in docker compose?

Auditor setup

- Seems to be a big lift and not well documented
- Perhaps a low performance version not involving external dumps could be supplied as a starting point
- Hopefully CMS contributions help with getting information from site. May need further generalization.

Helm and kubernetes are a big step forward

- Need to make sure this is useful outside of CERN
- Code customization can be done with experiment specific containers based on rucio/containers
 - ★ Will pip install rucio-cms be even easier?

Next steps

- Implement first steps of a real transition using NanoAOD
- Gain additional operational experience
- Complete adaptation of external CMS code
- Sort out network issues with k8s identified at CERN
 - Or move production servers off to dedicated VMs
- Document
- Have set out a number of use cases to track these dependencies
- Expect to transition fully to Rucio this year