iDDS (intelligent Data Delivery Service)

<u>Wen Guan</u>, Tadashi Maeno, Gancho Dimitrov Brian Bockelman, Torre Wenaus On behalf of iDDS project

> March 11, 2020 3rd Rucio Community Workshop

Introduction

- An intelligent service to transform and deliver needed data to consumers.
 - > Not a storage, WFMS or DDMs
 - Delegation of many functions to backend systems, such as WFMS and DDMs, and infrastructure, such as cache and network.
 - **Requirements**
 - > Flexibility to experiment agnostic
 - > Flexibility to support many use-cases and backend systems
 - Easy and cheap to deploy
- Key functions
 - > Transformation
 - > Delivery
 - Orchestration

Why new service

Orchestration of WFMS and DDMS is crucially important for optimal usage of limited resources

- **Resources = CPU, disk and tape storages, network, and manpower**
- > Delivery of necessary data to compute resources just in time
- **Rapid deletion of data as soon as they are processed**
- Needs for orchestration have been "discovered" while accumulating operational experiences, and functions have been added to existing services without generalization
 - **Examples in ATLAS**
 - Sub data block replication \rightarrow PanDA
 - Dynamic data placement → PanDA and Rucio
 - **Tape carousel** \rightarrow prodsys
 - Fine grained processing → JEDI
 - > Ambiguous and overwrapped service boundaries
 - Lack of reusability in each function for another usecase
- New use cases
 - ➤ Fine grained tape carousel
 - Active Learning
 - Hyperparameter tuning
 - Event Streaming Service
 - On-demand production of analysis format data

Wen Guan(Wisconsin-Madison) 3

3rd Rucio community workshop

Mar. 11, 2020 3

iDDS

- A general service to transform and deliver needed data to consumers.
 - Orchestration of WFMS and DDMS with generalized workflows
 - Experiment agnostic based on the generalization
 - Extraction and abstraction of functions for orchestration
 - Maintainability and extensibility with plugin architecture
 - **Flexibility to support new workflows**
 - Fine grained tape carousel
 - Active Learning
 - Hyperparameter tuning
 - Fine grained data transformation
 - Remote data transformation/reduction
 - On-demand production of analysis format data

Fine grained Data Carousel (implemented)

- Talks to rucio to collect and digest file information, and lets JEDI/PanDA process only prestaged files with proper granualities and grouping
- **Decides access protocol depending on data location etc in the future**
 - E.g. direct reading for google cold storage to avoid redundant egress due to job reassignment

Wen Guan(Wisconsin-Madison)

3rd Rucio community workshop

Mar. 11, 2020

Decision Making for Active Learning 1/2 Active learning

- **Running tasks on top of results of old tasks**
- > Decision making to generate new tasks from old results
- Workflow with grid entities
 - > Production system processes the normal task
 - > iDDS runs the Decision Making parts(with/without merge parts)

A multi-step job

A task

3rd Rucio community workshop

Decision Making for Active Learning 2/2

What should run intermediate steps? \diamond

- > Task/Job : the first task \rightarrow merge/physics task \rightarrow decision making task \rightarrow the next task \rightarrow ...
 - Possible to use task chaining
 - Base on the finished task, iDDS triggers to generate new tasks
 - Tasks require a few CPU time
 - Decision making requires a few CPU minutes
 - Merge/phys is can be an option if it's not CPU intensive and not disk intensive
- \succ External service for quick turnaround \rightarrow iDDS
 - Production system triggers iDDS to run the decision making job when a task finishes
 - iDDS reads the results of the decision making job and notifies production system to generate new tasks
 - transformation backends
 - Users provided codes as a decision making transformation backend
 - Builtin function to allow users to execute arbitrary transformations

Dynamically generate new tasks

Wen Guan(Wisconsin-Madison)

3rd Rucio community workshop

Hyperparameter tuning

Workflow

- > The User submits a hyperparamter tuning task
 - With trainable hyperparameters and ranges
 - With stopping parameters
 - With a few initial points (optional)
- Production injects the trainable hyperparameters and ranges to iDDS, and initial points if available
- > iDDS generates a batch of initial points if not defined.
- > iDDS notifies the batch of hyperparameters to to Production system
- > Production system runs jobs with received hyperparameters and notify results to iDDS
- iDDS generates new batch of hyperparameters for jobs in the task
- **Dynamically generate new jobs in the same task**

https://docs.google.com/presentation/ d/1fGw_p9XMHhbzH7GV0MavoE75OEk4tVdH0F-4YMZvwM/edit?usp=sharing

Other usecases

On-demand production

- > E.g. to produce unpopular DAOD after users submit analysis tasks
- ➤ Trade-off between CPU and disk
- ➤ Advantages
 - Less disk usage and No unused datasets
- > Disadvantages
 - Latency before analysis tasks actually get started
 - Issue with reproducibility
 - Re-created DAOD are not completely identical although they should be consistent to original files within numerical fluctuations
- \succ \leftrightarrow Proactive production
 - No latency, more disk usage, production of unused datasets
 - Mainstream files like DAOD_PHYS(LITE)
- \succ Ability to allow physics working groups to customize contents
 - TBD since not in ATLAS computing model

Remote reduction/transformation

- Centralization of data conversion for subsequent processing
 - Skimming, slimming, re-formatting, ...
- Would work well with data lake/ocean
- Reduction of data transfer over WAN, removal of data conversion step from iterative processing, geographical distribution of subsequent processing

Integration with ServiceX

- Plugin structure in Transformer agent
 - > Selection of plugin depending on use cases
- A plugin to use ServiceX as a transformation backend

Wen Guan(Wisconsin-Madison)

3rd Rucio community workshop

Current Status

Main architecture --ready

- ➢ iDDS database, core, REST API
- \succ Plugins
- \succ Agents
- > Watchdogs
- > Documentation: to add contents to <u>https://idds.cern.ch</u>
- Use cases
 - > Fine-grained data carousel -- ready, integration tests with panda
 - Decision making for active learning -- developing
 - > Hyperparameter tuning -- next
 - \succ Other usecases in 2020

Monitors

- \succ working with monitoring team
- > Prototypes are ready within panda monitor and grafana.