Quantum correlations in neutrino oscillations

Massimo Blasone

Universita di Salerno and INFN, Salerno, Italy



Summary

1. Entanglement in neutrino oscillations

2. Quantum Correlations & nonlocality in neutrino

oscillations

3. Chiral oscillations and lepton/antineutrino entanglement

4. Exact neutrino oscillation formula



Entanglement in neutrino

oscillations



Motivations

e Importance of entanglement both at a fundamental level and for
quantum information;

e Entanglement in particle physics: entanglement, decoherence, Bell
inequalities for the K°K° (or B°B) system*;

e Neutrino mixing and oscillations in Quantum Field Theory'.

e Necessity for a treatment of entanglement in the context of
Quantum Field Theory?;

*R.A.Bertlmann and B.Hiesmayr, Phys.Rev. A (2001); R.A.Bertlmann,
Lect.Not.Phys.(2006); A.Di Domenico et al. Found.Phys.(2012).

fM.B and G.Vitiello, Ann. Phys. (1995)

fM.O.Terra Cunha, J.A.Dunningham and V.Vedral, Proc. Royal Soc. A (2007)
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Entanglement in particle mixing®

— Flavor mixing (neutrinos)
|ve) = cosOlvy) + sinf |vo)

|v,) = —siné |v1) + cosf |vo)

e Correspondence with two-qubit states:
[v1) = [1)1]0)2 = [10),  |v2) = [0)1]1)2 = [01),

|); denotes states in the Hilbert space for neutrinos with mass m;.

= flavor states are entangled superpositions of the mass eigenstates:

|ve) = cos@|10) + sinf|01).

$M.B., M. Di Mauro and P.Jizba, J. Phys. Conf. Ser. (2007); M.B., F.Dell’Anno,
S.De Siena and F.Illuminati, EPL (2009).
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Entanglement - mathematical definition

e Given a bipartite system H = H4 ® Hp, a system is entangled, iff

A B
PAB F Zpk Pé., ) ®p,(f, )
k
with0<p;, <1, > . px=1

e For a generic pure state of the form:

[Wyas = > _cijli)a®|i)s

j
the condition for entanglement reads

V) aB # |6)a @ |[X)B
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Single-particle entanglement*

— A state like [¢) 4.5 = |0)a|1) 5 +|1) 4]|0) 5 is entangled;
— entanglement among field modes, rather than particles;

— entanglement is a property of composite systems, rather than of
many-particle systems;

— entanglement and non-locality are not synonyms;

— single-particle entanglement is as good as two-particle entanglement
for applications (quantum cryptography, teleportation, violation of
Bell inequalities, etc..).

*J.van Enk, Phys. Rev. A (2005), (2006);
M.O.Terra Cunha, J.A.Dunningham and V.Vedral, Proc. Royal Soc. A (2007);
J.A.Dunningham and V. Vedrdl Phys. Rev. Lett. (2007).
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Protocols for extraction of single-particle entanglement

Q
$»

One photon is split, creating an
entangled one-photon state.

Q
\> —

Each photon mode interacts with a
two-level atom. Resonance is
tuned to give a 7 pulse, if a photon
is present. The excitation is
transferred to the atomic pair.

One excitation is distributed
between two atoms. A Bell state of
excited-ground states is created.

one-particle
entanglement

state transfer

two-particle
entanglement

\ome/

One atom is split between two
traps, creating an entangled one-
atom state.

N e

Each atomic trap interacts with an
attenuated atomic beam.
Resonance is tuned to create a
molecule if one atom is found in
the trap. The traps are left empty,
and the atom is transferred to the
beams.

N N
o /'l' .

The (dark grey) trapped atom is
distributed between two (light grey)
atomic beams. A Bell state of
molecule—atom states is created.

tM.O.Terra Cunha J.A.Dunningham and V.Vedral, Proc. Royal Soc. A (2007)
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Multipartite entanglement in neutrino mixing?

— Neutrino mixing (three flavors):
) = U0,0)v,)

with |vg) = (|ve), ), [v-)" and |v,,) = (1), |v2), [vs) "
— Mixing matrix (PMNS)

—id
C12€13 S12€C13 S13¢€
) _ i i
u@,o) = —S12C23 — C12523513€¢"°  C12C23 — S12823513€" $23C13 ;
i8 i5
§12823 — €C12C€23513€ —C12523 — S12€23513€ C23C13

where (6,6) = (012,613, 023;0), cij = cos0;; and s;; = sin 0.

e Correspondence with three-qubit states:

[v1) = [1)110)2/0)5 = [100), [v2) = [0)1]1)2(|0)5 = [010),

lv3) = [0)1]0)2[1)s = |001)

fM.B., F.Dell’ Anno S De Siena, M.Di Mauro and F.Illuminati, PRD (2008).
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(Flavor) Entanglement in neutrino oscillations®

— Two-flavor neutrino states

) = 0.6 1™

where [vF) = (|ve), |v,))" and [1™) = (J11), |2))” and

cos sin 6
ul) = .
©) —sinf  cos6

— Flavor states at time t:

WD) = UB,8) Ug(t) U0, 86) " v = fj(t)|2<f)>7

—iEqt
with U (t) = ( ¢ . e*?Eﬁ )

$M.B., F.Dell’Anno, S.De Siena and F.Illuminati, EPL (2009).
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— Transition probability for v, — v

Py () = [Wslva(®)® = [Tap(t)]*.

e We now take the flavor states at initial time as our qubits:

e) = 1)el0) = [10)5,  [vu) = 0)e[1), = [01),

e Starting from |10); or |01), time evolution generates the
(entangled) Bell-like states:

Va)) = Uac(®)|1)el0)y + Tap()0)e|1), o= e, .




Entanglement measure

eLet p = [¢)(¢0] be the density operator for a pure state |¢)

Bipartition of the N-partite system S = {S1,S2,..., S~} in two

subsystems:

Sa, ={Si1,Sis,--,Sin}, 1<ii<ia<...<ip<N;(1<n<N)
and

SBy_p = {851,842, Sin_n}t 1< j1 <ja<...<jN-n < Niig#Jjp

o Reduced density matrix of 54, after tracing over Sp,  :

PA, = Piyjiz,...in — TTBan [p] = T,’)jl)ij“'tjf\"fn [P]
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e Linear entropy associated to such a bipartition:

AniBN_n d
SEP ) = S5 (0= Tralih,)),

d is the Hilbert-space dimension:
d = min{dim S4, ,dim Sg,_, } = min{2", 2V}

e Average linear entropy (global entanglement):

Sy o)) = ( N) >SN p),

n
An

sum over all the possible bi-partitions of the system in two
subsystems, respectively with n and N — n elements (1 <n < N).
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Entanglement measures

It is necessary to distinguish the various entanglement measures for
pure and mixed states (which may contain classical correlations).

e Measures for pure states:
- von Neumann entropy

- Geometric Entanglement

e Measures for mixed states:

- Entanglement of Formation and Concurrence
- Logarithmic negativity

- Relative Entropy of Entanglement
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Entanglement in neutrino oscillations: two-flavors

Consider the density matrix for the electron neutrino state
' = |ve(t))(ve(t)|, and trace over mode u = Pt
e The associated linear entropy is :

wa)(p(e)) =4 |I~Jeu(t)|2 |ﬁ€e(t)|2 = 4PV5%1/6 (t) PVQHV# (t)

The linear entropy for the state p(®) is:

Sl = g — (5D = 4 Tu ()] [Ue (1)

4‘6ue(t)‘2 (1 - |ﬁae(t)|2)

= 4‘6uu(t)|2 (1 - ‘ﬁzw(f/”z) :

e Linear entropy given by product of transition probabilities !




0.75

T

2Et
™2
AmT,

sin® @ = 0.314. Transition probabilities P, _,,, (dashed) and P,, .,

(dot-dashed) are reported for comparison.

Linear entropy S'*) (full) as a function of the scaled time T = , with




v—oscillations as a resource for quantum information

e Single-particle entanglement encoded in flavor states |v(/)(t)) is a
real physical resource that can be used, at least in principle, for
protocols of quantum information.

— Experimental scheme for the transfer of the flavor entanglement of a
neutrino beam into a single-particle system with spatially separated
modes.

Charged-current interaction between a neutrino v, with flavor o and
a nucleon N gives a lepton a~ and a baryon X:

Vg + N —a +X.
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Generation of a single-particle entangled lepton state (two flavors):

In the target the charged-current interaction occurs: vo +n — @~ +p
with a = e, u. A spatially nonuniform magnetic field B(r) constraints the
momentum of the outgoing lepton within a solid angle €2;, and ensures
spatial separation between lepton paths. The reaction produces a
superposition of electronic and muonic spatially separated states.
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e Given the initial Bell-like superposition |v,(¢)) the unitary process
associated with the weak interaction leads to the superposition

la(t)) = AE‘1>€‘O>M + Au|0>6‘1>u )

where [A.|? + [A,]? = 1, and |k)4, with k = 0,1, is the lepton qubit.
The coefficients A, are proportional to ﬁaﬂ(t) and to the cross

sections associated with the creation of an electron or a muon.

e Analogy with single-photon system: quantum uncertainty on the
“which path” of the photon at the output of an unbalanced beam
splitter < uncertainty on the “which flavor” of the produced lepton.

The coefficients A, plays the role of the transmissivity and of the
reflectivity of the beam splitter.
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Other results

e Generalization to three flavors. Extension to wave packets
(decoherence);*

e Flavor entanglement in Quantum Field Theory.®

*M.B., F.Dell’Anno, S.De Siena and F.Illuminati, EPL (2015).
'M.B., F.Dell’ Anno S De Siena and F.Illuminati, EPL (2014).
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Quantum Correlations &
nonlocality in neutrino

oscillations



Quantum Correlations

Quantum systems exhibit properties that are beyond our
understanding of reality. They show correlations that have no
classical counterpart.

Entanglement is the most known of these correlations. But the

terminology quantum correlations refers to a broader concept:

e Quantum correlations related to entanglement:

- Bell non-locality
- Entanglement
- Quantum steering

¢ Quantum correlations beyond entanglement:

- Quantum discord
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Quantum correlations beyond entanglement

The mutual information between two random variables A and B can
be expressed in two different ways:

I(A: B) = H(A) + H(B) — H(A, B),
J(A: B) = H(A) — H(A|B).

The quantum generalization is given by:

1(p"F) = S(p™) + S(p”) —S(pAB),

J(0"P) 5y = AHH}

The quantum discord is defined ast:

SPIA) = i [16*) = T (0 e )

*H. Ollivier, W.H. Zurek, Phys. Rev. Lett. (2001)
L. Henderson, V. Vedral, J. Phys. (2001)
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Quantum Resource Theory

Resource theories are a versatile set of tools developed in quantum
information theory?®.

The basic idea of a quantum resource
theory is to study quantum information
processing under a restricted set of
physical operations, called free operations.

These allow as to prepare only certain
iy L 7, physical states, called free states. The
o

other are called resource states.

$E. Chitambar, G. Gour, Rev. Mod. Phys. (2019)
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Entanglement in QRT

Alice and Bob work in their laboratory separated by a large distance.
They can communicate only by telephone.

.,\Pﬁ‘%.
Ao

The free operations consist in local operations and classical
communication (LOCC). But an entangled state cannot be generated
using LOCC = Entanglement is a (quantum) resource.
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Classification of QRT's

The QRTs can be classified in:

e Convex resources:
- Entanglement
- Coherence
¢ Non-convex resources:

- Quantum discord

Quantum Correlations & no >ality in neutrino

scillations




Quantum correlations in neutrino oscillations

e Recently, quantum correlations have been investigated in the
context of high-energy particle physics;

Focus on neutrinos and mesons, which are candidates for quantum

information applications beyond photons.

Quantum correlations in neutrino oscillations (partial list):

A.K. Alok et al., Quantum correlations in terms of neutrino oscillation
probabilities Nuc. Phys. B (2016)

J.A. Formaggio et al., Violation of the Leggett- Garg Inequality in Neutrino
Oscillation Phys. Rev. Lett. (2016).

J.Naikoo et al. Leggett-Garg inequality in the context of three flavor
neutrino oscillation Phys. Rev. D (2019)

K. Dixit et al., Study of coherence and mizedness in meson and neutrino
systems Eur. Phys. J. C (2019)

Quantum Correlations & nonlocality in neutrin illations




Quantum correlations in neutrino oscillations

X.-S. Song et al. Quantifying quantum coherence in experimentally observed
neutrino oscillations Phys. Rev. A (2018)

F. Ming et al. Quantification of quantumness in neutrino oscillations Eur.
Phys. J. C (2020)

L.-J. Li et al. Characterizing entanglement and measurement’s uncertainty
in neutrino oscillations Eur. Phys. J. C (2021)

P.Kurashvili et al Coherence and mizedness of neutrino oscillations in a
magnetic field Eur. Phys. J. C (2021)

S.Shafaq and P.Mehta Enhanced violation of Leggett—Garg inequality in
three flavour neutrino oscillations via non-standard interactions J. Phys. G
(2021)

e In Ming et al. (2020), quantumness in neutrino oscillations has
been quantified through correlation measures such as Non-local
Advantage of Quantum Coherence (NAQC), quantum steering and
Bell non-locality.
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Non-local Advantage of Quantum Coherence

e A state is said to be coherent provided that there are non-zero

non-diagonal elements in its matrix representation.

Coherence is quantified by menas of the [;-norm of coherence:*

Ci(p) = lpijl

i#]

The upper bound beyond which the effects of non-locality emerge is
given by:

3 Ch(p) < Conaa

1=x,Y,%

“T.Baumgratz, M.Cramer and M B Plenlo Phys. Rev. Lett. (2014).
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Quantification of quantumness in neutrino oscillations

— The criterion for NAQC can be also written ast:

N"(pap) = ZP P, Cr (pa,L.) > V6.
4,5,b

— The Bell non-locality can be detected by the violation of CHSH
inequality:
B(pap) = (Beusu)| < 2.

— The criterion of quantum steering for a bipartite system is:

)< 1.

Fn,(pAB, () = T

fF. Ming, X-K. Song, D. Wang, Eur Phys. J. C (2020)
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— The NAQC quantifier is defined as:

N (pap) = maX{O? N (pap) — V6 }

Nvlﬁaz(/)AB) -6

— The Bell nonlocality quantifier can be written as:

B(pas) = maX{Q B(pap) —2 }7

Bm,u,:{; (PAB) -2

— The steering quantifier is:

Faolpap) = max{() F3(pap) — 1 }’

? F:'):n,a:r(pAB) —1

Quantum Correlat onlocality in neutrino




Quantumness in

neutrino oscillations (Daya Bay) *
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*F. Ming, X-K. Song, D. Wang, Eur. Phys. J., (2020)
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Quantumness in neutrino oscillations (MINOS) f
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fF. Ming, X-K. Song, D. Wang, Eur. Phys. J., (2020)
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NAQC & Bell nonlocality in the wave packet approach

e We have extended the studies on quantumness of neutrino
oscillations through NAQC using the wave packet approach.

Neutrino with definite flavor:

[Va(z,t)) = Z Usjbs(z,t)vg)

where:

’L/)j(l’7t) r /dp d)J LP»L‘*iEj(p)t

with:

ity in neutrino



Wave packet description of neutrino oscillations

Assume the condition o, < E3(p;)/m;. Then we have:
Ej(p) ~ Ej +v;(p — pj)

Integrating on p, one gets the wave packet in coordinate space:

(z — Ujf)2]

P2
4U:v

P2

_1
¥ (z,t) = (270, ) *exp |:_7:Ejt +ipjx —

Write density matrix operator pa(z,t) = |va(z,t))(va(z,t)|. After time
integration, one gets the oscillation formula in space

* * . L L 2 p x 2
Paﬁ (L) = Z U4Yj U‘)’kUﬁj Uﬁk exp |:727TZ L().Z(: - (L(:oh,) 7271—2(1 - 5)2 (LO(—)IZ() :|
Jk Jjk Jk

gk
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Wave packet description of neutrino oscillations®

0.92 -

|
10 100 1000 10000
L(m)

Figure 1: Survival transition for an electronic neutrino in the wave packet
approach. £ =2MeV, £ =0, sin2 2013 = 0.084 + 0.005 and
Am2, = 2'42418:{? x 1073eV? and o5 = 3.3 x 10~ %m.

§C. Giunti, C.W. Kim, Fundamentals of Neutrino Physics and Astrophysics,
Oxford University Press (2007
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NAQC in the wave packet approach (Daya Bay)
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NAQC in the wave packet approach (Daya Bay)

The amount of coherence increases with the wave packet width o.

N
o

g
)

>

2
S 24 N
g \/
(0]
S 23
@
O 22+
<
A
e
L(km)

Figure 2: NAQC inequality as a function of the distance for three different wave
packet widths o;: 0z =5 x 1076 (green line), 0, = 2.5 x 10~%m (blue line) and
oz = 1.7 x 107%m (orange line). The value of the energy is £ = 2MeV .
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NAQC in the wave packet approach (MINOS)
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Results and perspectives

e Our treatment based on wave packets leads to a better agreement

with experimental data in the case of MINOS.*

e NAQC has a different long-distance behaviour for the two
experiments, due to the different values of the mixing angle.

e Existence of a “critical” angle for which NAQC exceeds the bound.

*M.B., S. De Siena and C. Matrella, Eur. Phys. J. C (2021)
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Complete Complementarity Relations

To better understand the above results, we resort to CCR.
e N.Bohr (1928): complementarity principle

o W.K.Wootters and W.H.Zurek, Complementarity in the double-slit
experiment: quantum nonseparability and a quantitative statement of
Bohr’s principle, Phys. Rev. D (1979)

e M.Jakob and J.A.Bergou, Quantitative complementarity relations in
bipartite systems: entanglement as a physical reality, Opt. Comm.
(2010)
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e For a pure state, |V 4 ) = Sodazlds =l @ij i, J) 4 5™

1,7=0
" dyg — 1
Phs(pA) + Chs(pA) + Chlé(pA\B) = dA
with
— Predictability
da—1 1
Pralos) = 3 (- -
i=0 A
— Quantum coherence (visibility)
da—1
Chs PA Z ‘qu|
1#k

— Non-local quantum coherence (entanglement)

Cralpais) = D lpisl> =2 > Rpisspivm)

ik, j#£l ik, j<l

*M.L.W.Basso and J.Maziero, J. Phys. A (2020)

Quantum Correlations & nonlocality in neutrin illations




CCR for oscillating neutrinos

Neutrino state:
[ve(t)) = aee [10) + ae,i [01)
with [10) = |ve), |01) = |v,).
The density matrix is:
0 0
|acu|2

Aeplo  |aeel?

0 0

.
Aeely,,

Pep =

o O O O
o O O O

The state of subsystems e and p are:

o = |ace|? 0 ) P = |aeul? 0
‘ 0 |ae/1,|2 7 . 0 |(1€(ﬁ|2

Quantum Correlat onlocality in neutrino




We find:f

Pus(pe) = Pl + P2, — %
Chs(pe) =0
CP(pep) = 2P.. Py,
where |ace|? = Pac, |acu|? = Py and Pag + Py, = 1.

e When wave-packets are considered, an integration over time is
performed, and the state p., is mixed.

fM.B, S. De Siena, C. Matrella, in preparation
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e For mixed states, we have to consider the following relation?:

108;2 dA - IA:B(/)AB) + SA\B(/)AB) + sz(ﬂA) + Cre(pA)a

o Cre(pa) = Sun(pAadiag) — Sun(pa) relative entropy of coherence;
o Po(pa) =Inda — Sun(padiag) predictability;
e I4.5(pap) mutual information of A and B

e SaB(paB) = Sun(pas) — Sun(pp) indicates how much it is
convenient knowing about the subsystem A with respect the
whole system.

e Work in progress. Interesting preliminary results.

fM.L.W.Basso and J.Maziero, (2021)
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Chiral oscillations and
lepton/antineutrino

entanglement



Chiral oscillations

e Taking into account (bi)spinorial nature of neutrinos and chiral
nature of weak interaction, one naturally gets chiral oscillations *

e They occur even with one flavor; interplay with flavor oscillations

in the non-relativistic region®

e For neutrinos from CvB, chiral oscillations reduce detection by a
factor of 2.*

e Application: lepton-antineutrino entanglement and chiral oscilla-
tions in pion decay.®

*A. E. Bernardini and S. De Leo, Phys. Rev. D (2005)

V. A Bittencourt, A.Bernardini and M.B., Eur. Phys. J. C (2021)
iS.-F. Ge and P.Pasquini, Phys. Lett. B (2020)

$V.A.Bittencourt, A.Bernardini and M.B., Universe (2021)
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Chiral oscillations

Chiral representation of the Dirac matrices

4|0 0 5701;
o =] L o]’

Any bispinor |€) can be written in this representation as
&) = |15
IS
The Dirac equation Hp |€) = z\{} can then be written as

Er) +m|En) =0k [Er),
Cr) +mér) =10 L),

e Evolution under the free Dirac Hamiltonian Hp induces left-right chiral

oscillations.
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Take initial state |1(0)) = [0, 0, 0, 1]7 which has negative helicity and
negative chirality: 45 [1(0)) = — [(0)).

The time evolved state |9 (t)) = et |1(0)) is given by

EpAm, +m p —iE t
- , . bl (pom
o) e 0 (14 ) e ()
N (1 ; Ep,mp+m) et ly_(—p,m))|,

with (for one-dimensional propagation along the e, direction)

1+ 2 )|+
lu(p,m)) =4/ ng — e
pom 1+ Ep,m+m )

Ep,m, +m <1 + Ep77:+m> Hi>

[ve(p,m)) =
4Ep,m — (1 F Yo 5+7n> ‘:|:>

)
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e Survival probability of initial left-handed state

P(t) = | (b (0) o (1) |2 = 1 —

Average value of the chiral operator (95)(t)

U (t)) = —1 + 2m (Epmt) .

(F5)(t) = (¥ (1)

%

T 10 g6 ———

E ?().75 g z? mass (eV/?Z) b

n Z G — 025 |4

g g 05 Rl o N 0.5

28 =gl | e 1.0 |9

E L0 g & :

g =strg ] 2.0

= 0 k . . . . 4 ©7o - 1
0 2 4 6 8 10 8 10

Momentum (units of mass) Momentum (eV/c)
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Chiral and flavor oscillations

e State of a neutrino of flavor « at a given t:

[Va(t) Z Ua.i [tm,; (1)) & |vi)

where |, (t)) are bispinors.

e The state at t = 0 reads

va(0)) = [¥(0) ®ZUWIVL %(0)) ® |va) »

where [¢(0)) is a left handed bispinor.

e Survival probability:

Passa = | Va(0)|va(t) = ‘Z‘Uav| (V(0)[1hm, (t )>| .




Two flavor mixing:
|ve(t))y = [COS2 0 |m, (t)) + sin? 0 [%rmy (t))} ® |ve)
i 0.c050 [ty (£)) = [Yma ()] © 1)
e The survival probability can be decomposed as
Perse(t) = P2 (t) + Ac(t) + Be(2).
P5.(t) is the standard flavor oscillation formula

E m 7E m
Pfﬁe(t)zl—sirf 26 sin” (77)’ 2 5 L lt)

and
m m 2
Ac(t) = — |z cos” sin (Epm,t) + z—— sin”sin (Epy’mzt):| )
Epima p,ma
Be(t) = 1Sin2 20 sin(Ep,m, t) sin(Ep myt) m 1
e - 2 » p,m1 » p,ma Epvmil Ep.’m2 ,

are correction terms due to the bispinorial structure.

e Agreement with the QFT formula (see below).

Chiral oscillations




Lepton-Antineutrino Entanglement and Chiral Oscilla-

tions*
e As an application of chiral oscillations, we consider induced spin

correlations in pion decay products (7 — | + D)

w(t = 0))

@ ) (b)
p@ﬁi‘—, ] ; ; 5
| =~ Pe; s = Pe; Jry Py
" Al® )+ Bl@ &)
Chiralities (7s):
¥ | -1 (left handed) (C) ‘\II <t > O)>
+1 (right handed) A(t)| <@ -~ ) +B(t)| @ 8- >

*V.A.Bittencourt, A.Bernardini and M.B., Universe (2021)




e For the creation process, we assume the following superposition

@) = 01 (P, M) © [uy (=p,mu)) = vy (P, mp)) @ [ug(=p, mu))

\/§
ST R O
S L R S AL A
with
Npn = [ 222 pom) =14 2

4By m Epm+m’




e At t = 0 the state is given by

1y @ 11| @)

w(0) = —L& ——L =L
(|1 @ 11| ®)

Chirality projectors ﬂgz)L) = (I + ()4 /2, with 45 = diag [fz, ffz]
and A = 7, [, such that

|W(0)) = Alp, mu, mz)[74(0)) @ |1,(0)) — B(p, mi, m»)|7,(0)) @ |14(0)).

The chirality projected states at ¢t = 0 are

_ IEE®) | 0
1741y (0)) = { 0 ] ol (0) = L + (i))] ,

and the coefficients of the superposition are given by

1 2
A(p,mu, my) = NPA,msz,myfﬂL(P, mg) f-(p, mu) {5 - ﬁ} ,
p,m;&p,myp

1 P> ~2
B(p, 11, 15) = Npsg Npsg £ (9, 125) 4 (9, 72) {5 - 7} .

Chiral oscillations




Spin entanglement at ¢t =0

e The state of the lepton-antineutrino pair is then described in the
composite Hilbert space He, @ Hs, ® Heo, @ Hs,

e [t is a 4-qubit entangled state.
e We can write |[U(0)) = |+¢,) @ |—¢,) @ |¥s, s,), with |[£4)
denoting the positive (negative) chirality of A = Cy;, and

|\PSV~,SI> = A(p7 ml77n17)| TSV> ® l \I/Sl> - B(p7 ’I’TL[,T)”L{,)‘ \L5u> ® | TSI,>
is the joint spin state at t = 0.

(a) Spin-Spin Entanglement
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Spin entanglement at ¢t =0

e Reduced density matrix

ps,.5(0) = Tre, ¢, \‘1’(0»(‘1’(0)@ =[¥s,,5)(Vs,,s]
= A*(p, mu, mp)| Toda) (Poda | + B (p,my, ma)| Lote) (Lot |
— A(p, my, mz)B(p, mi, my) U tod) ot |+ | dot) (tada |-

e Partial transposition yields pgﬂ’ s, from which we obtain the
spin-spin negativity for the state at t =0

Ns,.5,(0) = Nlps, 5, (0)] = 2| Ap, mu, mz) B(p, mi, myp)|.

Chiral oscillations




Spin entanglement at ¢ # 0

e For the joint lepton-antineutrino state we get

(W (t)) = Alp, mu, mp) |4 (1)) @ [1y(£)) — B(p, mu, mp) |7y (8) @ |14(2)),

— antineutrino components:
71(t)) = Np,ms [C_iEp'mr’ *fi(pyma)[ur(p,mo)) + €0t £ (p,ms) s (—p, ma)ﬁ ;
PL(6)) = Nopmg [ 5777 (b, m05) s (, m05)) + €577 £ (p, ) s (~p, ms)) ]

— lepton components:

1+ (8)) = Np,m, ["/7iEl7"YLth+(p7 m)ur (—p,mu)) — e PPt £ (p,mu) vy (p, W»]’

‘[\L(f)> = '/\/‘Pﬂ”l |:€_I:Ep"ml Lf, (pa m/l) ‘UL(_p? ml)> - eiEp.ml Lf+ (p7 m’l)'“l« (p~ ml)ﬁ .




Spin entanglement at ¢ # 0

e The reduced matrix pgs, s, (t) = Troniranity [|Y(¢))(U(t)]] describes a
mixed state with entanglement affected by chiral oscillations.

e Entanglement between the spins at time ¢

Ns,.5.(t) = Nlps, s, (t)] = [lp5, 5, = 1 = N, 5, (0)(t)

with

The average chiralities are given by (y5)a(t) = Tra[pa(t)] with A =1, 1:

2
N mg
Go)p(t) = 1= 25" [1—cos (2Bpm,b)],
p,miu
2
~ m
Fn®) = 1+ 5 L [1 - cos (2Ep,m,t)] -

Chiral oscillations




Spin entanglement at ¢ # 0

e Degree of mixedeness of the spin density matrix:

N2 s (01~ T)P)

T}, (1)) = 1 - =S5 ,

quantifies entanglement in the bipartition (S5, S;); (Cy, Cy), i.e.
between spins and chiralities.

o Tr[p3, g (t)] <1 = entanglement initially encoded only in the spins
redistributes into spin-chirality entanglement.

e Entanglement encoded in the bipartition (Cy, Sp); (Cy,.S)) is

conserved:

Tr[p?,(t)} = TI'[p%(t)] = .A4(p., my, my) + l5'4(p7 my,my)

2
0
= 17759.251( ) 1.




(a) Lepton Chirality (b) Antineutrino Chirality
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Figure 3: (a) Average lepton chirality, (b) average antineutrino chirality and (c)
spin-spin entanglement as a function of the momentum and of time.




Chiral oscillations and Bell spin correlations

e The quantity
Blp(t)] = \<§9,1 ® Sl,1> + <Sf/,1 ® gl,2> + <Sz7,2 ® §1,1> - <S17,2 ® Sl,2>\,

is the Bell observable used to investigate non-local correlations!.

For pure states, B[p] > 2 indicates that the correlations shared
between the spins are non-local and that the state is entangled.

'N.Brunner et al., Rev. Mod. Phys. (2014)
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Bell Observable
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Figure 4: Bell observable as a function of the momentum (in units of the

antineutrino mass and in log scale) and of time for m;/m; = 107,




Results & Perspectives

e We find that chiral oscillations do affect spin-spin correlations for
the entangled lepton—antineutrino couple.

e Resonance of oscillation amplitude at neutrino mass: possibility of
extracting fundamental information via quantum correlations

e We plan to study Leggett-Garg inequalities for the reduced system
involving only leptonic d.o.f.

e Inclusion of flavor oscillations.

Chiral oscillations




Exact neutrino oscillation

formula



Mixing of neutrino fields

— Mixing relations for two Dirac fields
Ve(x) = cosf vi(x) + sinf ve(x)
vy (x) = —sinf vi(x) + cosf vo(x)

V1, vy are fields with definite masses.

— Mixing transformations connect the two quadratic forms:

L = 1 (7 @—Tﬂ,l)Vl—FI;Q(?: ﬁ—m/g)llg
and
L = 0(0@—m)ve+0, (0 D—mu)vy — Mey (DeVy + Duve)
with

2 .2 .2 2 . )
Mme = mq cos” 0 +masin® 6, m, = masin” 0 + ma cos” 0, me, = (M2 —ma) sind cos 6.



— v; are free Dirac field operators:
@ =3 T [kt ok + aea(0 87
vi(z) = — {uk’i U)oy ; + vy (1 B*kﬂl , =12
k,r \/V

— Anticommutation relations:

(v (@), () bz = 6% (x = ¥)0apdis; Aok, afl;} = {8l By} = 6° (k — @)6,:0

— Orthonormality and completeness relations:

—iwpat, T L 7 _ gt T _ [ 2
> U, Viei(t) = e o, s wr =/ k2 4+ m]

Srt s vt s ort s _ o rakx rTf rax rf _ <
Uy Ulei = Vy Vi = Ors 5 Uy Vg =0, E (uis wy; + 590" ) = dagp -
T

— Fock space for vy, vs:

H={al,. B, 0.}

— Vacuum state [0),, =[0); @ |0)s.



Neutrino mixing in QFT

e Mixing relations for two Dirac fields

ve(z) cosf vy (x) 4 sinf vo(x)
v, (x) = —sinfwvi(z) + cosb v(z)

. +
can be written as*

vi(z) = Gy'(t) vi(z) Go(t)
via) = Gy'(t) v(x) Golt)
— Mixing generator:

Gatt) =exp [0 [ x ((apato) - vi(oin ()

d2 a e . . « L« d .« e
For ve, we get Joz ve = —vg with ic. vg lg—o = V1, 4gve {9:0 = 5.

fM.B. and G.Vitiello, Annals Phys. (1995)



e The vacuum |0), , is not invariant under the action of Gg(?):

2

10(8)) e, = G (2) 0),,

e Relation between |0), , and [0(t)).,,: orthogonality! (for V — o0)

v/ %k ln(lfsinzG\VkF)2

i = li J(2m)3 =
VlgIcl)o 1,2<0‘0(t)>6,/1 Vlgréc € 0
with
Vil? = Z \ viTk?lu,f{Q 40 for my#mo
8



Quantum Field Theory vs. Quantum Mechanics

e Quantum Mechanics:
- finite f of degrees of freedom.

- unitary equivalence of the representations of the canonical

commutation relations (von Neumann theorem).

e Quantum Field Theory:
- infinite f of degrees of freedom.

- 0o many unitarily inequivalent representations of the field algebra <
many vacua .
- The mapping between interacting and free fields is “weak”, i.e.

representation dependent (LSZ formalism)*. Example: theories with

spontaneous symmetry breaking.

*F.Strocchi, Elements of Quantum Mechanics of Infinite Systems (W. Sc., 1985).



e The “flavor vacuum” |0(t)),, is a SU(2) generalized coherent state!:

0)e, = H {(1 —sin? 0 |Vi|?) — €"sin @ cos 6 |Vi| (afjl Do Ty kal)
k,r

+ €"sin? 0 | Vic| | U | (a:fl Tk,l — alrjg iTk_Q) + sin? 0 | Vg |? a6 P! IT{TQ 110),,
e Condensation density:
en (Ol 0t)ese = {0 Bl BA0®) e = sin® 0 Vi)
vanishing for m; = mz and/or = 0 (in both cases no mixing).
— Condensate structure as in systems with SSB (e.g. superconductors)

— Exotic condensates: mixed pairs

— Note that [0)c, # |a)1 ® |b)2 = entanglement.

tA. Perelomov, Generalized Coherent States, (Springer V., 1986)



Condensation density for mixed fermions

IVi?

10 100 1000

Loglk|
Solid line: mj = 1, mo = 100; Dashed line: mq = 10, mg = 100.
- Vk = 0 when m; = ms and/or 6 = 0.

2

- Max. at k = /mims with V0. — % for (m2=m)” o

mime

) 2
- Vil = 2o for ks .



e Structure of the annihilation operators for [0(%))e,,:

aﬁﬁe(t) =cosf oy ; +sinf (Uf(‘( )ak o€ Vi (t) B k2)
g (1) = cosf oy 5 — sind (Uk(t) o 1 —€ Vic(t) Bﬁk,l)
B i) = 0050 875, +sin 0 (UE(1) A3 o= Viclt) o

B (£) = 080 71— sin® (Vi) B+ Viclt) o)

e Mixing transformation = Rotation + Bogoliubov transformation .

— Bogoliubov coeflicients:

U (t) — rt o Si(wge—wg)t . Vi) = e o't o i(wk,2+wk,1)t
K(t) Uy oUk,1 € ; k(t) =¢ Uy 1V—k2 €

Ul® + Vil =



Decomposition of mixing generator *

Mixing generator function of my, mo, and 6. Try to disentangle the
mass dependence from the one by the mixing angle.

Let us define:

R(0) = exp {9 Z [(aijl Qo + »gf;j[lﬂli,z)@wk - (”gz‘yﬁl + /317;?2/317;,1>67Wk] }v
k,r

B;i(©;) = exp { Z Ok, € [a’l’;ﬂfp’ik,ieﬂw’“" — ﬂszang’m’”} }, i=1,2
k,r

Since [By, Bo] = 0 we put

B(@l, (‘)2) = B1 (@1) BQ(@Q)

*M.B., M.V.Gargiulo and G.Vitiello, Phys. Lett. B (2017)



e We find:
Gy = B(01,05) R() B7'(01,0,)

which is realized when the ©y ; are chosen as:

. (Pp,1+9PK,2) .
Uk = e ¥ COS(@k_l — (‘)kyg) ; Ve =¢ 2 SlIl((‘)k,l — @kﬂg)

The B;(Ox;), i = 1,2 are Bogoliubov transformations implementing a
mass shift, and R(#) is a rotation.

— Their action on the vacuum is given by:

|6>1’2 = 371(617 @2)‘0>1_’2 H {COS @kﬂj + €" sin ekyiagiﬂﬂk,i} |O>1’2

k,r,

R7Y0)|0)12 = [0)12.



Bogoliubov vs Pontecorvo

Bogoliubov and Pontecorvo do not commute!

As a result, flavor vacuum gets a non-trivial term:
0)ee =Gy tl0)12 = [0)12 + [B(mi,ma), R7'(0)] [0)1

e Non-diagonal Bogoliubov transformation

T+ 9(1/(;1:){3 sz (aklﬂ k2+a )]|0>12,

T

(ma—mq)?
mima

with a =



Currents and charges for mixed fermions *

— Lagrangian in the mass basis:

L = Upm, (7 a - AJ{]) VUm

) 0
where v = (v1,15) and My = ( e )
0 mao
e [ invariant under global U(1) with conserved charge Q= total charge.

— Consider now the SU(2) transformation:

/ 1T . P —
v, = ey, ; 7 =1,2,3.

with 7; = 0;/2 and o; being the Pauli matrices.

*M. B., P. Jizba and G. Vitiello, Phys. Lett. B (2001)



The associated currents are:

0L = Qo Uy 1), Mgl vy = —a; 0,8 j
J;L:L J - 77777. ’Yu Tj Vm
— The charges Q,, ;(t) = [ d*xJ), ;(x), satisfy the su(2) algebra:

[Qm,,j (t)7 Qm,k(t)] - Z.€j/fl Qm,l(t) .

— Casimir operator proportional to the total charge: C,, = %Q

e (.3 is conserved = charge conserved separately for v; and vs:

Ql = %Q + Qm,B = /djxyir( )Vl( )

Qy = %Q — Qms = /d3x yg(x) vo(x).

These are the flavor charges in the absence of mixing.



The currents in the flavor basis

— Lagrangian in the flavor basis:

L= Df(i@—]w)l/f

Me  Mep
where v{ = (v, v,) and M = ‘ .
: Mep My,

— Consider the SU(2) transformation:

/

vy = € vy ; j=1,2,3.
with 7; = 0;/2 and o; being the Pauli matrices.

— The charges Qf; = [ d*x J%j satisfy the su(2) algebra:
(Qr.5(1), Qrr ()] = i€jm Qra(t).

— Casimir operator proportional to the total charge Cy = C,, = %Q



e ()3 is not conserved = exchange of charge between v, and v,,.

Define the flavor charges as:

Q) = 30+ Qualt) = [ dxvl@)nla)

Qi) = 5@ - Quald) = [Ex @) n

where Q.(t) + Qu(t) = Q.
— We have:

Qc(t) = cos’0Qq +sin®0 Qs +sinbcosd / d*x [1/11/2 + V2TV1}

Qut) = sin® 0 Q1 + cos? 6 Qo — sin@cos@/d3x |:I/IV2 + ng]}



In conclusion:

— In presence of mixing, neutrino flavor charges are defined as

Q.(t) = /d3x vi(z)ve(z) Qu(t) E/d3X Z/;E(.Z‘) vu(x)

They are not conserved charges = flavor oscillations.

— They are still (approximately) conserved in the vertex = define
flavor neutrinos as their eigenstates

e Problem: find the eigenstates of the above charges.



e Flavor charge operators are diagonal in the flavor ladder operators:

1Qu(t): = /d3X s vi(2) v () =

2 [ (a3l (ako6) = 57,05, 0) o= e
Here : ... = denotes normal ordering w.r.t. flavor vacuum:
tAz= A — ., (0[A|0),,
e Define flavor neutrino states with definite momentum and helicity:
o) = g, (0) [0)e,
— Such states are eigenstates of the flavor charges (at t=0):
2 Qo v o) = IVio)



Neutrino oscillation formula (QFT)

— We have, for an electron neutrino state:

Qolt) = Wiel = Qo(t) = 1)

= Hopom.of @} + {57, 0.0.)

e Neutrino oscillation formula (exact result)*:

Que(t) = 1 — |Uif? sin®(20) sin® (“E2 L ) 142 sin? (20) sin? (227251 )

O, (t) = |Uk|? sin?(26) sin <w t) + |Vi|? sin®(20) sin <M t)

2

- For k> /mimsz, |[Ui|? = 1 and |Vi|? — 0.

*M.B., P.Henning and G.Vitiello, Phys. Lett. B (1999).



Lepton charge violation for Pontecorvo states!

— Pontecorvo states:

Vie)p = cosO |V ) + sind [ ,)
Wi = —sinf Vi) + cosd Vi) |
are not eigenstates of the flavor charges.

= wviolation of lepton charge conservation in the production/detection

vertices, at tree level:
P{Vikel 1 Qe(0) : Vi )P = cos® @ + sin* 6 + 2|Uy| sin® @ cos?h < 1,

for any 6 # 0, k # 0 and for my # mo.

fM. B., A. Capolupo, F. Terranova and G. Vitiello, Phys. Rev. D (2005)
C. C. Nishi, Phys. Rev. D (2008).
- Entanglement in neutrino oscillations Quantum Correlations & nonlocality in neutrino oscillations Chiral oscillations



Other results
e Rigorous mathematical treatment for any number of flavors *
e Three flavor fermion mixing: CP violation';
e QFT spacetime dependent neutrino oscillation formulal;
e Boson mixing?; Majorana neutrinos¥;
e Flavor vacuum and cosmological constant!
e Flavor vacuum induced by condensation of D-particles.**

e Geometric phase for mixed particles’t.

*K. C. Hannabuss and D. C. Latimer, J. Phys. A (2000); J. Phys. A (2003);
TM.B., A.Capolupo and G.Vitiello, Phys. Rev. D (2002)

N

+M.B., P. Pires Pachéco and H. Wan Chan Tseung, Phys. Rev. D, (2003).

s
3M.B., A.Capolupo, O.Romei and G.Vitiello, Phys. Rev. D(2001); M.Binger and C.R.Ji. Phys. Rev.
D(1999); C.R.Ji and Y.Mishchenko, Phys. Rev. D(2001); Phys. Rev. D(2002).

M.B. and J.Palmer, Phys. Rev. D (2004)

I\.B., A.Capolupo, S.Caposziello, S.Carloni and G.Vitiello Phys. Lett. A (2004);

*N.E.Mavromatos, S.Sarkar and W.Tarantino, Phys. Rev. D (2008); Phys. Rev. D (2011).
TTM.B., P.Henning and G.Vitiello, Phys. Lett. B (1999)



Dynamical generation of fermion mixing*.

Flavor-energy uncertainty relations for mixed states?.
. s, . . +
e Poincaré invariance for flavor neutrinos*.

Violation of equivalence principleS.

*M.B., P.Jizba, N.E.Mavromatos and L.Smaldone, Phys. Rev. D (2019)

fM. B., P. Jizba and L. Smaldone, Phys. Rev. D (2019)

fM.B., P.Jizba, N.E.Mavromatos and L.Smaldone, Phys. Rev. D (2020) ; A. E.
Lobanov, Ann. Phys. (2019)

$M.B., P.Jizba, G.Lambiase and L.Petruzziello, Phys. Lett. B (2020)
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