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In the 1920s, a group of physicist, in their
discussions at the physics institute in
Copenhagen, reached agreements as to what the
theory of quantum mechanics says, and how to
work with it. There was one issue where
agreement was more difficult to obtain:

What is really going on, in a quantum
system as we describe it?

But finally they did agree: It is amazing how well the theory predicts all
probabilities without the need to answer this last question. Therefore:

Do not ask the question; there is no way to answer it by doing
experiments. “Shut up and calculate!”

Their package of prescriptions and equations is called
the Copenhagen interpretation. It is entirely correct,

but . . .
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But I disagree with the last verdict !

By asking what it might be that is ‘truly happening’,
one will learn more about our physical world.

There are things that we cannot find out unless we try to
explain what quantum mechanics is.

Take: The Standard Model of the Elementary Particles.

The interactions are determined by the coefficients for non-linear parts of
the field equations: the coupling constants.

The field equations do not reveal what the strengths of these coupling
constants should be expected to be, and why they have the values
observed.

And then, there is the cosmological coupling constant, Λ.
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Motivation of my work:

Understand the problem of “quantum gravity”, which amounts to:
How to reconcile General Relativity (GR) with Quantum Mechanics,
and: what determines the SM constants of nature.

We understand GR quite well. My claim: Today’s obstacle is our lack of
understanding what quantum mechanics really is.

The aim of this talk is to do away with a popular
view of quantum mechanics (QM) as “something
mysterious that nobody can understand”.

In fact, one can understand QM very well as a
vector representation of any kind of ordinary,
deterministic, realistic evolution law for physical
data. There is no such thing as ‘quantum logic’.

The ‘truth’ requires only standard logic.
This will be explained.
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Basic Models
1. The periodic chain.
Ontological (= real) states:

|0〉, |1〉, . . . |N − 1〉
Evolution law:
|k〉t+δt = U(δt) |k〉t

U(δt)|k〉 = |k + 1 mod N〉

U(δt) = e−iH δt , d|ψ〉
dt = −i H|ψ〉

(Schrödinger Equation)

|n〉E def
= 1√

N

N−1∑
k=0

e2πikn/N |k〉ont ,

|k〉ont = 1√
N

N−1∑
n=0

e−2πikn/N |n〉E .

k = 0, · · · , N − 1 ;
n = 0, · · · , N − 1 .

H = 2π
N δt n = ωn 2

1
0

k

(δt)-1
T

 -1
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QM was thought to require revision of logic. NOT SO. QM may well
be nothing but the vector representation of an ordinary moving system.

In model previous slide: Given an initial state,

ψ(x , 0) = δ(x − x0) ,

The vector function of a classical system will keep this form. After k
steps in time,

ψ(x , t) = δ(x − x(t)) .

It is easy to find the H that does this.

Question: can a classically evolving system obey a
Schrödinger equation that does smear the wave function?

Answer: if hyper-fast classical variables are added to the system!.

We now show how to understand the emergence of such a
Schrödinger equation, without loosing locality.
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Simplified approach: just one fast periodic variable ϕ(t) with angular

velocity ω � 10TeV .

spectrum
Slow

spectrum
Fast

00

ω

2ω

(N −1) ω

spectrum
TotalEnergy levels:

variable
Fast

ω

ϕ = 2πk / N

domain
Physical energy

The slow spectrum can come from interactions with the fast variable(s)!
The zero-energy state of the fast variable is a superposition of real states.
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Let’s try to generate an equation as complicated as H = 1
2p

2 + V (x),

First, we have to put x on a lattice, and replace 1
2p

2 → 1− cos p .

Then the operator cos p is obtained by considering the permutations
P = {|x〉 ↔ |x + 1〉}, separately for the even and the odd values of x .

Now this commutator would act at all time values t = k δt. That is
much too fast.

Therefore, we postulate that this permutator only acts if two of the
fast variables are in some given positions, η and η′ see circles :

H1 =
π

2δt

∑
a

δϕ1=ηa δϕ2=η′a P , using e−
1
2 iπP = −iP , if P = ±1

In the lowest energy state, 〈
∑
a

δϕ1=ηa δϕ2=η′a 〉 =
Na

N1N2
.

Note: we here use perturbation expansion. Na/N1N2 is a small number.

Thus, the Hamiltonian generates ‘quantum’ superpositions!
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Doing this separately for the even and the odd x values, we now are in
the position to achieve the Schroedinger equation for H = 1

2p
2, for a

deterministically evolving system.

It generates superpositions in the wave functions of the effective slow
variable x , using perturbation expansion (very accurate here).

To get a term V (x), we can add a binary fast variable σ(t) (a variable
that flip-flops rapidly). This gives it two energy states, again widely
separated. As with the other fast variable(s), only the lowest energy state
is occupied. V (x) may be postulated to contain a term that affects the
speed of the flipflops of σ, it similarly has to be limited to special values
of the other fast variables, otherwise, V (x) gets unphysical, large values.

Proposal: continue along these lines to get the Schrödinger equation for
the SM.
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Quantum Mechanics uses complex numbers. Why are wave functions
always complex?

Answer: complex numbers are pairs of real numbers: ψ = <+ i=.

This means that there exists one single binary variable σ(t) that takes
two values. It flipflops as time proceeds, and so, it functions as our clock.
Energy is dual to this binary clock. Quantum mechanics emerges as soon
as we switch from the classical binary ‘observable’ σ(t) to its dual
observable, energy.
From this point of view, energy is not classically observable. On the
other hand, energy = frequency, and of course observable.

Note: the faster our variable flipflops, the lower the energy.
- - -

Our constructions are so easy that one may well wonder what the causes
are of the numerous quantum paradoxes:
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Quantum paradoxes:

– EPR Paradox

– Bell’s theorem, Clauser - Horne - Shimony - Holt (CHSH) inequality

– Measurement problems, Collapse problem

– Entanglement

– Schrödinger’s cat

– Greenberger - Horne - Zeilinger (GHZ) paradox (etc.)

Mostly come about out of lack of understanding how classical evolution
laws may operate:

Most of these models use spin degrees of freedom, assuming nature has
rotation symmetry. Are these to be worried about, if we formulate our
theories on a lattice?

There is continuous rotation invariance, but only in the vector represent-
ation! Whether this holds up at different time scales is not known.
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Our procedure: 1. Take a quantum theory, in a given basis.
Suppose the wave function of your initial state is a delta peak:
〈k|k1〉 = δk,k1

Then, we compute the probabilities. No paradox yet.

Paradox comes if some of your observers change their minds as of what
to observe.

But then, they choose to be in a quantum superposition . . .

In the Cellular Automaton Interpretation, this is forbidden. Observers
have the ‘free will’ to choose a classical state for the settings of their
detectors, but they can’t choose to be in a superposition.

We can construct a setting that will put the observers in a superposition,

But this requires a different basis of states, so that we use entirely
different ‘beables’. And then we also take away the observer’s ‘free will’.

Is there still a paradox? A strange feature of this theory is its internal
symmetries. Rotations require the vector representation. Is this a
‘feature’ or a ‘bug’?
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The Cellular Automaton: Only classical evolution equations.

Quantum field lattice: same with quantum evolution equations.
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The ‘fast variables’ are completely localised: at least one such variable
in each CA cell.
In that case, there seems to be no problem with locality.
All commutators between all observables vanish outside the light cone.
This guarantees that no information can be sent faster than some
limiting speed.

Unsolved problem: how to recover Lorentz invariance on a space-time
lattice. It seems to be very hard to get such large symmetry groups.

This topic will be hard to reconcile with GR.
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Conjecture: Most symmetries of the SM have become continuous
symmetries because they act on vectors, not on the classical variables.

At the Planck scale, there may be more symmetry.

This one concludes by using the familiar mathematical
technique used in QM: The vector representation.
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Consider a scalar field φ(x), quantised as usual in a QFT.
Its contribution to the Hamiltonian H is:

H = 1
2 (∂φ)2 + 1

2m
2 φ2 + λ

4! φ
4 .

Measured at the Planck scale, m ≈ 10−19. Various authors (Veltman,
Jegerlehner, . . . ) point out that, for the scalar Higgs field, it so happens
that λ runs towards ≈ 0 at the Planck scale.
This may imply a new, accidental, global symmetry at the Planck scale:

φ(x)→ φ(x) + Cnst ,

leaving Hamiltonian H invariant.

This Goldstone symmetry holds whenever a light, scalar particle has a
mass and a coupling strength that both run to zero at the Planck scale.

Qu: Can we employ these symmetries to identify the automaton
evolution rule?
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Conclusion

In its present form, QM just allows for a certain amount of ignorance in our
understanding. But in spite of the existence of this vector representation, our world
can still be fully deterministic. This may be helpful for understanding the details of
the Standard Model.

The usual ‘quantum paradoxes’ arise when one assumes that an observer can
‘freely choose’ between different observables for measurements. This seems to be
allowed according to the Copenhagen rules. We now propose a small modification of
these rules: There exists a class of ‘beables’: states that are all orthonormal, such that
beables can only evolve into other beables. The universe started as a single beable.

Alice and Bob can only choose freely for another beable. If they want to choose
any superimposed state, they actually need to modify the initial state entirely. All
beables have different beables in their past. This is usually ignored when Bell and
followers assume ‘statistical independence’. As for ”free will”: in spite of what
many people think, our brains are controlled by laws of nature just like the rest of our
world. Sorry about that, but this is an unavoidable assumption.

And it is an important issue: without explaining what ‘free will’ amounts to in its
mathematics, one will fail to understand the underlying physics on which QM is based.
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Equations: A cat can may seem to be in superposition of ”dead” and ”alive”. People
try to attach strange versions of logic to that – According to the CA interpretation, a
cat is always in a beable state, where ‘dead’ and ‘alive’ are easy to distinguish.

Yet the equations seem to say that superpositions are possible. This needs to be
explained.
Equations present QM as vector representation of reality. This representation allows
for an interpretation in terms of probabilities. But it doesn’t have to be that. Example:
permutation group. Note: this group is discrete., while its vector space is continuous.

We cannot prove that our world is deterministic, but QM doesn’t prove that it isn’t.
I showed some simple examples as to what QM could be.
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Cause of the quantum effects: many of the degrees of freedom of the nano-world
fluctuate too fast to be followed by observers,

- We must work with MODELS. Then use quantum notation

If you believe in determinism, you have to believe it all the way. This is very hard for
some people. They want their ‘free will’.

Important problem: in spite of theory being discrete, symmetries can be continuous.
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The vector representation for 6 beable states.

| x 〉

| y 〉

| z 〉

| s 〉

| t 〉

| u 〉 | ψ 〉 = α | x 〉 + β | y 〉 + γ | z 〉 + ...

Schematic set-up of a 6 dimensional vector space showing the 6 basis
elements |x〉, |y〉, |z〉, |s〉, |t〉 and |u〉, and a superimposed state |ψ〉.
Nature can only be in one of the basis elements.

THANK YOU
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