

Nov 29 - Dec 3 2026

MoEDAL, MAPP and future endeavours

Beirgen

Vasiliki A. Mitsou

for the MoEDAL Collaboration

ette 2020-2021

MoEDAL – Monopole & Exotics Detector At LHC

LHC's first dedicated search experiment (approved 2010)

Optimised for anomalously ionising (meta)stable particles

- Highly ionising particles magnetic & electric charges
 - magnetic monopoles
 - SUSY sleptons & R-hadrons
 - doubly charged Higgs
 - v mass models
 - KK extra dimensions
 - D matter

- black-hole remnants
- Very low ionisation → MAPP
 - fractional electric charges
 - displaced vertices from *neutral* particles

Baseline MoEDAL detector

- Mostly passive detectors; no trigger; no readout
- Permanent physical record of new physics
- No SM physics backgrounds

- Low-threshold NTD (LT-NTD) array
 - z/β > ~5-10
- Very High Charge Catcher NTD (HCC-NTD) array

• z/β > ~50

- ③ TimePix radiation background monitor
- (4) Monopole Trapping detector(MMT) aluminum bars

MoEDAL physics program Int. J. Mod. Phys. A29 (2014) 1430050

MoEDAL

Nuclear Track Detectors (NTDs)

- Passage of a highly ionising particle through the plastic NTD marked by an *invisible* damage zone ("latent track") along the trajectory
- Damage zone revealed as a cone-shaped etch-pit when the plastic sheet is chemically etched
- Plastic sheets are later scanned to detect etch-pits

CR39 Alum 3 sheets each 500 µm thick MAKROFOL 3 sheets each 200 µm thick	hinium back plate	
Aluminium face plate 25 cm × 25 cm	Looking for aligned etch pits in multiple sheets	

MMTs deployment

11 boxes each containing 18 Al rods of 60 cm length and 2.54 cm diameter (**160 kg**)

LHC beam pipe; interaction point \rightarrow (x)

2015-2018

- Installed in forward region under beam pipe & in sides A & C
- Approximately **800 kg** of aluminium
- Total 2400 aluminum bars

Magnetic monopoles

- Symmetrise Maxwell's equations
 - electric \leftrightarrow magnetic charge duality
- Paul Dirac in 1931 hypothesised that the magnetic monopole exists
 - monopole is the end of an infinitely long and infinitely thin solenoid (*Dirac's string*)
 - Dirac's quantisation condition: $ge = n\left(\frac{\hbar c}{2}\right)$
- In 1974 't Hooft and Polyakov found that GUTs predict monopoles as topological solitons
 - produced in early Universe with mass 10¹⁷ 10¹⁸ GeV
- Yongmin Cho proposed in 1986 the Electroweak (Cho-Maison) monopole
 - non-trivial hybrid between (Abelian) Dirac and (non-Abelian) 't Hooft-Polyakov monopoles
 - magnetic charge 2g_D
 - mass between 4 to 7 TeV is detectable by MoEDAL at LHC!

Laws	Without monopoles	With magnetic monopoles
Gauss's law	$\mathbf{\nabla}\cdot\mathbf{E}=4\pi\rho_e$	$\mathbf{\nabla}\cdot\mathbf{E}=4\pi\rho_e$
Gauss's law for magnetism	$\boldsymbol{\nabla}\cdot\mathbf{B}=0$	$\nabla \cdot \mathbf{B} = 4\pi \rho_m$
Faraday's law	$-\nabla \times \mathbf{E} = \frac{\partial \mathbf{B}}{\partial t}$	$-\nabla \times \mathbf{E} = \frac{\partial \mathbf{B}}{\partial t} \cdot \underbrace{4\pi \mathbf{J}_m}$
Ampère's law	$\nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{\partial t} + 4\pi \mathbf{J}_e$	$\nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{\partial t} + 4\pi \mathbf{J}_e$

OR
$$g = \frac{n}{2\alpha}e = ng_D = n(68.5e)$$

S GeV

For a review on monopole theory and searches, see: Mavromatos & VAM, Int.J.Mod.Phys.A 35 (2020) 2030012

Monopole properties in a nutshell

- Single magnetic charge (Dirac charge): g_D = 68.5e
 - higher charges are integer multiples of Dirac charge: g = ng_D, n = 1, 2, ...
 - if carries electric charge as well, is called **Dyon**
- Photon-monopole coupling constant
 - large: g/hc ~ 20 (precise value depends on units)
 - [•] following duality arguments, may be β-dependent, $\beta = \sqrt{1 \frac{4M^2}{s}}$
- Dirac monopole is a *point-like* particle; GUT monopoles are *extended* objects
- Monopole spin is not determined by theory \rightarrow free parameter
- Monopole mass not theoretically fixed → free parameter
- Monopole interaction with matter: Cherenkov radiation, multiple scattering and high ionisation

Induction technique results

- Monopoles can bind to nuclei and get trapped
- MMTs scanned through superconducting quantum interference device (SQUID) at ETH Zurich
- Persistent current: difference between current after and before

Persistent current after first two

Magnetic monopole limits

Novelties in monopole models considered w.r.t. other experiments

- β-dependent coupling
- spin-1 monopoles
- γγ fusion

MoEDAL, JHEP 1608 (2016) 067, PRL 118 (2017) 061801, PLB 782 (2018) 510, PRL 123 (2019) 021802

MoEDAL has set the world-best collider limits for **|g| > 2 g**_D 9

Drell-Yan & $\gamma\gamma$ -fusion

MoEDAL, Phys.Rev.Lett. 123 (2019) 021802 [arXiv:1903.08491]

See also, Baines, Mavromatos, VAM, Pinfold, Santra, <u>Eur.Phys.J.C 78 (2018) 966</u>

Photon-fusion monopole production process has much higher cross section than Drell-Yanlike at the LHC c.m.s. energies

Extended reach by combining Drell-Yan and γ-fusion production processes

Search for dyons

- Dyons possess both electric and magnetic charge
- MMT scanning searching for captured dyons
 - 6.46 fb⁻¹ of 13 TeV pp collisions during 2015-2018

σ [fb]

- Analysis considered
 - dyons of spin 0, ½, 1
 - Drell-Yan production
- Excluded cross sections as low as 30 fb
 Excluded cross sections as low as 30 fb
 Excluded cross sections as low as 30 fb

MoEDAL, Phys.Rev.Lett. 126

(2021) 071801 [arXiv:2002.00861]

11

Search for dyons – results

- Mass limits
 750-1910 GeV were set for dyons with
 - up to 5 Dirac magnetic charges (5g_D)
 - electric charge
 1e 200e
- Previous searches for highly ionising particles would, in principle, also have sensitivity to dyons

MoEDAL, Phys.Rev.Lett. 126 (2021) 071801 [arXiv:2002.00861]

Monopoles via thermal Schwinger mechanism

Monopole-antimonopole pairs may be produced in strong magnetic fields present in heavy-ion collisions

5.02 TeV/nucleon **B** Pb–Pb Collisions

 $(L_{int} = 0.235 \text{ nb}^{-1})$

Advantages over DY & yy-fusion production

- cross-section calculation using semiclassical techniques
 - \Rightarrow does not suffer from non-perturbative nature of coupling
- no exponential suppression $e^{-4/\alpha}$ for finite-sized monopoles

Gould, Ho, Rajantie, <u>PRD 100, 015041 (2019)</u>, arXiv:2103.14454 Ho & Rajantie, <u>PRD 101, 055003 (2020)</u>, <u>PRD 103 (2021) 11, 115033</u>

Schwinger production results

- Exposure of MMTs in 0.235 nb⁻¹ of Pb-Pb heavy-ion collisions at 5.02 TeV per nucleon
- Limits on monopoles of 1 3 g_D and masses up to 75 GeV
- First limits from collider experiment based on non-perturbative calculation of monopole production cross section
- First direct search sensitive to monopoles that are not point-like

Monopole mass reach appears to be 20–30 times lower than current bounds from ATLAS and MoEDAL, however, this crosssection calculation is theoretically sound

MoEDAL, <u>arXiv:2106.11933</u>, submitted to *Nature*

CMS beam pipe

Beam pipe

• most directly exposed piece of material

- overs very high magnetic charges
- 1990's: materials from CDF, D0 (Tevatron) and H1 (HERA) subject to SQUID scans for trapped monopoles
- 2012: first pieces of CMS beam pipe tested [EPJC72 (2012) 2212]; far from collision point
- Feb 2019: CMS officially transfers ownership of the Run-1 CMS beam pipe to MoEDAL

Beam pipe scanned with SQUID at ETH Zurich Interpretation in progress

Electrically charged particles

- If sufficiently slow moving, singly or multiply charged particles may leave a track in NTD
- Supersymmetry offers such long-lived states: sleptons, R-hardons, charginos
- Multiply charged scalars or fermions are predicted in several models of v masses
- Highly Electrically Charged Objects (HECOs): finite-sized objects (Q-balls), condensed states (strangelets), microscopic black holes (though their remnants)
- MoEDAL can complement ATLAS/CMS reach in longer-lifetime region

Results on **HECOs** in final stages of approval **First MoEDAL** analysis with **NTDs** !

Thursday talk by
 Rafal Maselek

16

MOEDAL MAPP

Hidden sector & long-lived particles

Heavy neutral leptons ("sterile neutrinos")

- explain SM v masses (seesaw), DM, BAU
- weak semi-leptonic decays of hadrons, W, Z

Dark vectors ("Dark Photons")

- A' Y/Z ; adding U(1) gauge group to SM, kinetic mixing with γ/Z
- light neutral meson decays, milli-charged particles

Dark scalars ("Dark Higgs")

neutral singlet scalers that

- couple to the SM Higgs field produced in penguin decays of K, D, B mesons

Axion-like particles ("ALPs")

- solution of the strong CP problem
- generalisation of the axion model in MeV-GeV mass range

Standard Model

Hidden sector

For a review on LLP experiments, see: VAM, 2111.03036 [hep-ex]

MAPP – MoEDAL Apparatus for Penetrating Particles

Consists of two subdetectors:

- core millicharged particle detector MAPP-mQP
 - particles with charges *<< 1e* leaving a trace of low ionisation
- very long-lived weakly interacting neutral particle detector MAPP-LLP

 Protected by ~100 m of rock overburden

MAPP possible location in UA83

- Easily accessible gallery, already fitted out
- Access independent from LHCb

UA83

UJ84

RB84

Rough Envelope of the MoEDAL-MAPP-mQP Detector in UA83

previous position
(mQP 2017 prototype)

- Consists of 400 scintillator bars (10×10×75 cm³) in 4 sections readout by PMTs
- Deployed in UA83 for Run-3 → 100 m from IP8 at 6.5° to the beam
- Shielded by ~35 m of rock from SM backgrounds from the IP and protected from CR backgrounds by 110 m rock overburden
- Installation planned to start in December 2021

mQP & millicharged particles (mCPs)

Dark photon decays to mCPs

Heavy neutrino with large EDM

Frank et al, Phys.Lett.B 802 (2020) 135204

Limits that MAPP can place on heavy neutrino production with large EDM at Run-3 and HL-LHC at IP8

Extremely Long-Lived Charged Particles with MAPP-mQP

- MAPP-mQP can be used to monitor MoEDAL's exposed trapping detector for the decays of electrically charged trapped particles
 - exposed trapping volumes moved directly underground to UA83
 - lifetimes longer than 10 years can be probed

SuperWIMP model for cold dark matter

- WIMP \rightarrow SM + SWIMP
- SuperWIMP particles may explain the observed lithium under-abundance

Feng, Rajaraman, Takayama, Phys. Rev. D 68, 063504 (2003)

MAPP Phase 2 – LLP detector

- "Box-within-a-box" structure to detect charged tracks from neutral-particle decays
- Scintillator strips in x-y configuration readout by SiPMs
 - resolutions ~1cm × 1cm on each hit
 - 500 ps or better timing resolution
- MAPP-2 utilises the renovated UGC1 gallery
- To be installed during LHC Long Shutdown 3 and run in HL-LHC

MAPP-LLP – dark matter & supersymmetry

Dark Higgs scenario

Reach for 30 fb⁻¹/300 fb⁻¹ for a scenario where a dark Higgs ϕ mixes with SM H⁰ (mixing angle $\theta \ll 1$), leading to exotic B $\rightarrow X_{s}\phi$ decays with $\phi \rightarrow \ell^{+}\ell^{-}$

MAPP-LLP – extended neutrino models

Heavy neutrino via Z' production

Pair production of RH neutrinos from the decay of an additional neutral Z' boson in the gauged B-L model – Run-3 (30 fb⁻¹)

adopted from Phys.Rev.D 100 (2019) 035005

Sterile neutrinos

Minimal scenario: interactions are purely mediated by W- and Z-bosons via active-sterile neutrino mixing

De Vries, Dreiner, Günther, Wang, Zhou, JHEP 03 (2021) 148

Cosmic-MoEDAL

- If magnetic monopoles are much heavier than O(TeV), they could be detected in "monopole telescopes"
- "Cosmic-MoEDAL" is a proposal for a very large array (~10,000 m²) of CR-39 NTDs to be deployed at very high altitude, e.g. at Mt Chacaltaya laboratory in Bolivia (5,400 m)

Able to search for cosmic monopoles with velocities $\beta \sim 0.1$, from the LHC's TeV scale all the way to the GUT scale

J. L. Pinfold, <u>arXiv:1412.8677</u> & <u>Phil.Trans.Roy.Soc.Lond.A 377 (2019) 2161, 20190382</u>

Summary & outlook

- MoEDAL has published exciting results
 - sole contender in high magnetic charges
 - sole dyon search in accelerator experiment
 - first search for monopoles produced via Schwinger mechanism
- MAPP can further explore the low ionisation regime
 - mQP will probe *millicharged* particles
 - MAPP-2 with its LLP subdetector will search for neutral long-lived particles giving rise to displaced vertices → dark sectors, v portals, SUSY, ...
- Program planning for Run 3:
 - redeploy MoEDAL baseline detector
 - Install MAPP detector
- Stay tuned for upcoming results !
 - □ Highly Electrically Charged Objects (HECOs) → first NTD analysis!
 - CMS beam pipe scanned for trapped monopoles

Thank you for your attention!

3 TimePix radiation monitor

- Timepix (MediPix) chips used to measure online the radiation field and monitor spallation product background
- Essentially act as little electronic "bubble-chambers"
- The only active element in MoEDAL

- 256×256 pixel solid state detector
- 14×14 mm active area
- amplifier + comparator + counter + timer

The MAPP-mQP detector

- Central milli-charged (mCP) detection sections
- Forward veto from SM particles coming from IP8
- 100 × (10 cm × 10 cm × 75 cm) scintillator bars in 4 lengths, 2 lengths/section readout by 4 low noise 3.1" PMTs in coincidence
- No background from dark counts and radiogenic backgrounds

Prototype mQP installed in 2017

- 3×3 bars (~30×30 cm)
- ~10% of full detector

Calibration by pulsed blue LEDs + neutral density filter

MAPP-mQP construction

preparation area MAPP-mQP support structure being machined at the University of Alberta

MAPP/MALL