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A

WHY INFLATION in THE EARLY UNIVERSE!

e (Cosmological inflation (a phase of quasi-de-Sitter accelerated expansion
with an exit) was proposed to explain homogeneity and spatial flatness of our
Universe at large scales, its large size and entropy; inflation can explain the al-
most scale-invariant spectrum of CMB radiation; cosmological perturbations from
quantum fluctuations during inflation can seed the CMB anisotropy and the LSS.

e Inflation is a paradigm, not a theory! Theoretical mechanisms of inflation
use a driver (called inflaton field) with proper scalar potential.

e The physical nature and origin of inflaton and scalar potential, as well as its
interactions with other fields are the big mysteries.

e There is a more fundamental (vs. phenomenological) way of thinking about

inflation, and it is given by supergravity and string theory.
Inflation is the very HEP phenomenon (107 {13} GeV) !



WHY SUPERGRAVITYY

e Supergravity is a field theory with local SUSY that automatically implies GR.

e Supergravity is the only way to consistently describe a spin-3/2 field in GR;

e Supergravity remains the primary candidate for new physics beyond the
SM; it connects gravity to particle physics, unifies bosons and fermions, and severely
restricts their couplings; but the scale of SUSY breaking is unknown (well above TeV scale).

e SUSY leads to a cancellation of quadratic divergences in quantum loops;

e Some supergravity theories arise as the low-energy effective actions in
(compactified) superstring theory (Quantum gravity) in String Landscape; it leads to
their UV-completion and possible protection against quantum corrections!

Supergravity can be considered as a bridge between classical and quantum gravity.
e Supergravity as a more fundamental theoretical framework to the phe-

nomenological model building (though not ultimate one) around the GUT scale!
Supergravity with spontaneously broken SUSY has particle candidate (LSP) for DM.
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Starobinsky model

The Starobinsky model of inflation is defined by the action (Starobinsky,1980)

Mg, [ a4 ,— 1 2
SStar.ZT/dx —Q(R‘FWR)a (1)

where we have introduced the reduced Planck mass Mp, = 1//87GN ~ 2.4 X
1018 GeV, and the scalaron (inflaton) mass m as the only parameter. We use the
spacetime signature (—, 4+, 4+, 4+, ).

The (R+R?) gravity model (1) can be considered as the simplest extension of the
standard Einstein-Hilbert action in the context of modified F'(R) gravity theories
with an action

2
5. = MBI / d%2/—g F(R) . 2)

in terms of the function F'(R) of the scalar curvature R.



Equivalence between f(R) gravity and scalar-tensor gravity |

The F'(R) gravity action (2) is classically equivalent to

2
Slgu ] = 2B [ g /=g [F'GO(R = x) + F() 3)
2

with the real scalar field x, provided that I/ = 0O that we always assume. The
primes denote the derivatives with respect to the argument.

The equivalence is easy to verify because the x-field equation implies x = R. In
turn, the factor F” in front of the R in (3) can be (generically) eliminated by a Weyl
transformation of metric g, Which transforms the action (3) into the action of the
scalar field x minimally coupled to Einstein gravity and having the scalar potential

v <MF2>|> xF'(x) — F(x)
S\ 2 F'(x)?

(4)



Equivalence between f(R) gravity and scalar-tensor gravity |

The kinetic term of x becomes canonically normalized after the field redefinition
x(p) as

F'(x) = exp (\/gSO/MPI) , p= \/§\/Z\§4p| InF'(x) , (5)

in terms of the canonical inflaton field ¢, with the total acton

M2
Squintessence[gw/, 90] — Tpl/d433\/ —QR—/ d433\/ —g [%g“”au@@uso + V(SO)] .
(6)

The classical and quantum stability conditions of F'(R) gravity theory are given
by
F'(R) >0 and F"(R) >0, (7)

and they are obviously satisfied for Starobinsky model (1) for R > 0.



The inverse transformation

The inverse transformation reads

_[V6ay , 4V >
R = My 2 + M2 exp (\/;SO/MPI) : (8)
V6 g4y, 2V 2
F=|—- — 2 M :
G + M2, exp( \/;SO/ PI) (9)

In the case of Starobinsky model (1), one finds the famous potential

V(p) = ZMF%lmQ [1 — exp (—\/ggo/Mm)]Q | (10)

This scalar potential is bounded from below (non-negative and stable), and it has
the absolute minimum at ¢ = 0 corresponding to a Minkowski vacuum. The
scalar potential (10) also has a plateau of positive height (related to the inflationary
energy density), that gives rise to slow roll of inflaton during the inflationary era.
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The inflationary features

A duration of inflation is measured in the slow roll approximation by the e-foldings

number
1 eV
Mp| Yend V'
where . is the inflaton value at the reference scale (horizon crossing), and peng
Is the inflaton value at the end of inflation when one of the slow roll parameters

2 N 2 I
ey () = ]\42P| (Y/) and ny(p) = MI%I <V7> : (12)

Is no longer small (close to 1).

The amplitude of scalar perturbations at horizon crossing is given by

V3 3m?2 D
As = * = sinh? . 13
S 1272M8, (VA2 8r2M3B, <\/5Mp| 19)
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Starobinsky inflation and CMB (Planck)

The Starobinsky model (1) is in very good agreement with the Planck data. The
Planck (2018) satellite mission measurements of the Cosmic Microwave Back-
ground (CMB) radiation give the scalar perturbations tiltas ns ~ 142ny, —6ey =
0.964940.0042 (68%CL ) and restrict the tensor-to-scalarratioas r =~ 16ey, <
0.064 (95%CL). The Starobinsky inflation yields » ~ 12/N2 ~ 0.004 and
ns ~ 1 — 2/Ne, where N¢ is the e-foldings number between 50 and 60, with the
best fit at Ne ~ 55.

The Starobinsky model (1) is geometrical (based on gravity only), while its (mass)
parameter m is fixed by the observed CMB amplitude (COBE, WMAP) given by
10g(1019A4,) = 2.975 4+ 0.056 (68%CL) (or As ~ 1.96-1079) as

ma~~3-1013Gev or —— ~1.3.1075. (14)
Mp,
A numerical analysis of (11) with the potential (10) yields (with N =~ 55)

2 4 2 2
\/;‘P*/MPI ~ In (5N6> ~ 5.5, \/;Spend/MPl ~in) 4+ 3V3)| ~ 0.5

11



More comments about Starobinsky inflation

e Universality for slow roll: see Egs. (8) and (9);

e No free parameters (high predictive power);

e Einstein criterium ("simple but not too simple”):

Starobinsky potential (10) won against a power potential (Planck mission, 2018);

e Attractor solution with an exit: H(t) ~ (%)2 (teng—t)—+- . . thatis driven by
the 4+ R? term (scale invariance, no ghost; uniqueness in quadratically modified
gravity); scalaron as the Nambu-Goldstone boson of spontaneously broken scale invariance.

e The UV-cutoff of (R 4+ R?) gravity is Mp| > Hinr, after expanding the
Starobinsky potential (10) in powers of ¢;

e Starobinsky potential as the mass term: %g(l — e—\/%qﬁ) = ( yields the
non-canonical kinetic term with a singularity at ¢ocr. = 3g/(2m) and the critical
exponent a = \/2/73 (the universality again);

e Any viable inflationary model should be close to the Starobinsky model!

(among single-field models of slow-roll inflation)
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Higgs inflation

Basic ideas (Bezrukov, Shaposhnikov, 2007):

(1) identify inflaton with Higgs particle,

(ii) no new physics beyond the SM up to Planck scale,

(ilf) non-minimal coupling of Higgs to gravity.

The Lagrangian (in Jordan frame) reads (Mp| = 1)

where

1 1
Ly=v=g |50+ EH%)R — 9" 0upOvd — Vi (9)

(-7

IR

V(o) =

(16)

(17)
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Details of Higgs inflation

e going from Jordan frame to Einstein frame after

97" = gy (1 +€47)

e getting a canonical scalar kinetic term for ¢ = ©(¢) after

dp _ /140 +66)¢?

dp 14 £¢2
This yields the standard (quintessence) Lagrangian
1 1
Lg=+V—yg [§R - Eg“yﬁmﬁ@ucb - V(@)]
with the potential
v
Vi) = Va6

1+ ¢02(p)]°

(18)

(19)

(20)

(21)
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The large field approximation

e In the large field approximation, ¢ > £~1, a solution to (19) is

O ~ \/gln (1 + §¢2> (22)

so that we get

V(p) = e (1 e 2/3g0)2 23

that coincides with the Starobinsky inflationary potential.

e The (CMB) phenomenology requires £/v/A ~ 5 - 104 with the inflaton mass

m—\fg— ~ 105,
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Comments about Higgs inflation |

e Actually, the SM Higgs field H is a doublet, though one can choose the unitary
gauge in which H = ¢/+/2 in the Higgs Lagrangian

2

e il the large field approximation and during slow roll (inflation) we can ignore
the scalar kinetic term and simplify the potential as

Lo = V=g |51+ EPIR - 56 (25)
Then varying with respect to ¢ ylelds EOR = > or
>_ €
¢ =R (26)

Substituting it into £z gives the Starobinsky model again:

com i o
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Comments about Higgs inflation |l

e This established correspondence in the theory of gravity is known in the liter-
ature as the asymptotic duality between the Higgs and Starobinsky models of
inflation.

e There is no correspondence in the small field approximation. Reheating is
also different. For instance, the reheating temperature Ty ~ 1013 GeV,
whereas T ~ 109 GeV.

e The question arises: does the correspondence also hold in supergravity the-
ory?

The answer is more difficult because supergravity realizations of Starobinsky
and Higgs inflationary models are non-trivial.
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4. Inflaton in a massive vector N=1 multiplet

The Inflaton (scalaron) can also belong to a massive vector multiplet V' that has
a single physical scalar. The scalar potential of a vector multiplet is given by the
D-term instead of the F'-term, while any desired values of the CMB observables
(nsand r) are derivable from the inflaton potential proportional to the derivative
squared of arbitrary real function J(gV") (starting from Van Proeyen 1989). The
Lagrangianis
2 3,57 ~2J 1
L= /d 02 1 3(DD — 8R)e 37 + Iwew,t + hc., (5)
and its bosonic part in Einstein frame reads
2 2

e 1L =R — }FpnF™ — 1770, COMC — EJ" B BT — %02, (6)

where C' = V| is the real scalar inflaton field and J = J(C).

The D-type scalar potential of the Starobinsky inflationary model is obtained with
(Mp=1)

J(C):%(C—InC) and C:exp(\/%qb).
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Super-Higgs mechanism

Consider the master function J(V) as a function J(He2Y H) where we have
introduced the Higgs chiral superfield H. The J is invariant under the gauge
transformations

Hoe%H, Hoe?H, VoV+L2Z-2), (6)

whose gauge parameter Z itself is a chiral superfield. The original theory of the
massive vector multiplet governed by the master function J is recovered in the
supersymmetric gauge H = 1.

We can now choose the different (Wess-Zumino) supersymmetric gauge in which
V = V7, where V7 describes the irreducible massless vector multiplet minimally
coupled to the dynamical Higgs chiral multiplet H (Aldabergenov, SVK, 2017).
The standard Higgs mechanism appears when choosing the canonical function
J = 2He?V H that corresponds to a linear function J.
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R? inflation from our model I

The relevant part of our supergravity model (5) before Weyl rescaling
to Einstein frame reads (Mp; = 1)

e 1L = exp (—%J) (%R) — Lg% exp (—%J)(J’)2 , (9)

2
where J = J(C), C = V]y—qg, J(C) = %(C— InC), and C = e\/;b, and
we have ignored the kinetic term of C. This implies

2
e 3/ =ce 0 =0 >0
and

le=a(3rR) -3 (39) 2 (1-c1)?,
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R? inflation from our model II

where C' = C(£2) is given by Lambert function, and Q2 is the auxiliary
field. Varying £ with respect to €2 yields

SR = (%g)zﬂ(l—ﬁ> ~%) o1+ %) . Qv

where in the large field approximation, C~1 <« 1 and |1/InQ] < 1, so
that in the leading order we get

2
AR~ (gg) Q. (12)
Substituting it back into the Lagrangian yields
_ —2
e 1L~ Elg (%g) R?
as the leading term.
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R? inflation from our model III

After including the next-to-leading term we find
2
In(§R/g2)

so that the modified R? inflation is reproduced in the gauge H = 1.

1+ (14)

L~ L (39) R

When using the Wess-Zumino gauge V = V7 with the charged Higgs
(Stueckelberg) superfield H and the function J(He29V1H), the same
R? inflation is reproduced along the same lines with another function
exp[—3J(HH)] = Q after ignoring both the H-kinetic term and the
gauge field dependence in V7 in the large field approximation.
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Comments 1

e The [ R? term is most relevant for inflation in both gravity and
supergravity. It is distinguished by its two features: (a) scale
invariance, and (b) no ghosts.

e The inflaton terms in our supergravity model (Mp, = 1)

_%J//(aC)Q . %QQ(J/)Q (15)

can be transformed by a field redefinition gJ'(C) = my into a sum
of the non-canonical kinetic term and the mass term as

1
. " _18 2 -2 2
5201 09)7 = SmPe
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Comments 1I

e In the Starobinsky case, we have J”(C) = 2C~2 = Zexp (—2,/2/3¢)

and %g(l — C~1) = me. Therefore, the existence of a plateau in
the canonical potential V(¢) gets translated into the existence of
a singularity at a finite value of pcr. = 3 g/(2m) in the kinetic term

of ¢ in (16). The " critical exponent’ in the Starobinsky case is
a=,/2/3.

e Starobinsky model can be extended to the so-called a-attractors =

the inflationary models with the ” critical exponent” o in the
potential proportional to (1—e~®®) in the large field approximation
(Kallosh, Linde, Roest 2013).
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Comments III

e Starobinsky-like models in higher (D) spacetime dimensions are
based on (R + R™) gravity with n = D/2. The presence of an
n-form field F'is required with a flux compactification on a sphere
and the warp factor. It yields (Nakada and SVK 2017)

D—2 8(D —1)

o = and r =
D—1 (D—2)N€2

(17)

e Minkowski vacuum is uplifted to a dS vacuum in our D = 4 super-
gravity models via the alternative FI term (Aldabergenov and SVK
2018). It leads to a spontaneous SUSY breaking after inflation
with < D >= ¢ and the cosmological constant \ = %52 = N\p.
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Comments IV

The Starobinsky and Higgs inflationary models as Quantum Field
T heories are non-renormalizable and need a UV completion. The
UV cut-off of (R+ R?) gravity is Ag = Mp,, whereas Ay = Mp/¢.
Hence, the Higgs inflation is much more sensitive to quantum
corrections. Extra massive scalar may increase Ay, aslong as

that do not spoil inflation.

There exist a D-brane-antibrane configuration that reproduces the
Starobinsky potential in supergravity by the D-term (Binetruy,
Dvali, Kallosh, Van Proeyen 2004). This gives a UV-completion
of the proposed supergravity model in string theory (quantum

gravity).
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Conclusion

T he Starobinsky inflation and the Higgs inflation belong to the same
universality class of the inflationary models.

In supergravity, the Starobinsky picture and the Higgs picture of
inflation appear in the two different gauges of the same super-
gravity model, modulo the subleading corrections.

Key CMB measurements needed: the values of the tensor-
to-scalar ratio r and non-gaussianity.
BICEP/Keck Array, Simons Observatory, LiteBIRD, etc.

Thank you very much for your attention!
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