(Direct) Dark Matter Searches and (some) Implications for Theory

Manfred Lindner

DISCRETE 2020-2021, Bergen, Norway, Nov 29 - Dec. 3, 2021

The cosmic Matter Balance

Competing Dark Matter Directions

Gravity

Particles

MOND

a simple one scale modification → fails badly

Other

new GR modifications

or

a suitable population (mass, number) of black holes

- BSM physics motivated by SM problems
- WIMPs (neutralinos)
- axions
- sterile ν 's

- ---

Models with correct abundance

- WIMPs
- dark photons
- ALPs
- other new particles

WIMPs combine both aspects in an attractive way: BSM + abundance

Hunting WIMPS in different Ways

SM

known Standard Model (SM) particles interact with WIMPs: assumptions...

SM

indirect detection

FERMI, PAMELA, AMS, HESS, IceCube, CTA, HAWC... astronnomical uncertainties... → is the signal without doubt from DM? keV lines ←→ atomic physics

WIMP wind : 220km/s from Cygnus

→ modelling
→ rare event backgrounds

colliders

may detect new particles, but is it DM (lifetime, abundance)? So far nothing seen...

- \rightarrow impact on theory...
- \rightarrow SUSY \rightarrow higher scale
- → other SB motivated WIMPs
- → new ideas/candidates

Generic WIMP Cross Section

• Quantum mechanics: wavelength $\lambda \sim 1/mass$

"size = area" of a particle: $\pi \lambda^2 = \pi/m^2$

 \rightarrow cross section: area lpha coupling strength

- natural range for a 50GeV WIMP: $\sigma \sim 10^{-42} 10^{-48} \text{ cm}^2$
- known DM abundance
 - → WIMP flux → known rate @direct detection

→ generic WIMP range ← → find it or exclude WIMPs

Pushing into new Territory

The XENON Dark Matter Program

The XENON program at Gran Sasso, Italy (3600 mwe)

Trentino-Ato ige	XENON10	XENON100	XENON1T	& XENONnT
Vale d'Aost Piemonte Ligura Ligura Sardiegna Sardiegna Sicilia				
Period	2005-2007	2008-2016	2012-2018	2020-2024
Total mass	25 kg	161 kg	3200 kg	~8000 kg
Drift length	15 cm	30 cm	100 cm	150 cm
Status	Completed (2007)	Completed (2016)	Running	Construction
σ _{SI} limit (@50 GeV/c²)	$8.8 \times 10^{-44} \mathrm{cm}^2$	$1.1 \times 10^{-45} \mathrm{cm}^2$	$1.6 \times 10^{-47} \mathrm{cm}^2$ (2018)	$\begin{array}{c} 1.6 \times 10^{-48} \text{ cm}^2 \\ (2023) \end{array}$

XENONnT was prepared while XENON1T took data → switching gears → XENONnT started 2020

XENON1T @ LNGS: Running until 12/2018

 $\rightarrow\,$ Goal: two orders of magnitude improvement in sensitivity with respect to XENON100

XENON1T: Nuclear Recoil Searches

ER Surface Neutron AC WIME

→ SI WIMP limits down to 3 GeV/c² [PRL 121, 111302 + PRL 123, 251801]

recently confirmed by PandaX: arXiv:2107.13438 M. Lindner, MPIK

Migdal: ...it takes time for the electrons to catch up...

PRL 123, 241803 - Migdal effect PRL 123, 251801 - light dark matter

Double Electron Capture of 124Xe

 $T = 1.8 \pm 0.5_{\text{stat}} \pm 0.1_{\text{sys}} \times 10^{22} yr$ No rejection significane: 4.4σ

→ about one trillion times the age of the Universe
 → longest half-life ever measured directly
 Nature 568 (2019) 7753, 532-535

Search for New Physics with ER Events

Phys. Rev. D 102, 072004

ER Surface Neutron AC WIMP 8000 Large exposure: 60 **keV**NR **0.65** tonne-years 4000 **Unprecedented** low 2000-15. background: cS2_b [PE 1000 76 ± 2 events/t/yr/keV Low threshold: 4001 keV_{ee} 200 → excess events!? 0 3 20 30 50 60 10 40 70 cS1 [PE]

Energy Reconstruction and Resolution

Combine light and charge

$$E = W \cdot (n_{ph} + n_e)$$
$$= W \cdot \left(\frac{S1}{g_1} + \frac{S2}{g_2}\right)$$

- \rightarrow detector constants g₁ and g₂
- Anti-correlation between light and char
 Checked with calibration sources
- Energy resolution < 5 % at 50 keV</p>

The Result

- Exposure: 0.65 t*y
- Single scatter events within [1,210] keV_{ee}
- Nice agreement at higher recoil energies

→ Excess between 1-7 keV:
285 events observed
(232 ±15) expected from best-fit

Explanation #1: 3.5σ fluctuation

- Good fit observed over most of the energy range
- Consistent with expectations

L

 Unbinned maximum likelihood fit profiling over nuisance parameters:

$$\begin{aligned} (\mu_s, \boldsymbol{\mu_b}, \boldsymbol{\theta}) &= \operatorname{Poiss}(N | \mu_{tot}) \\ &\times \prod_{i}^{N} \left(\sum_{j} \frac{\mu_{b_j}}{\mu_{tot}} f_{b_j}(E_i, \boldsymbol{\theta}) + \frac{\mu_s}{\mu_{tot}} f_s(E_i, \boldsymbol{\theta}) \right) \\ &\times \prod_{m} C_{\mu_m}(\mu_{b_m}) \times \prod_{n} C_{\theta_n}(\theta_n), \\ \mu_{tot} &\equiv \sum_{j} \mu_{b_j} + \mu_s, \end{aligned}$$

 → (76 ± 2) events / (t*y*keV) in [1,30] keV window
 Lowest bg rate ever achieved in this energy range
 <u>Explanation #2:</u> Some unexpeccted new background?

M. Lindner, MPIK

A fit would require less than 3T per kg of LXe 15

New Physics

- A singal from where?
- Sun:
 - neutrinos (exist, but CEvNS too small $\leftarrow \rightarrow$ neutrino floor is close...)
 - \rightarrow some non-standard v interaction with electrons
 - axions or ALPS produced in the sun
- DM density/flow
 - some new particle
 - → not WIMPs
 - → light and not hot DM? A new light boson?
- Diffuse background of invisible particles

 consistency with other searches/limits

So far >300 citations...

→ mostly theory explanations
→ 3 main directions: Axions, v's, light bosons

Signal Interpretaion: Solar Axions?

Production:

Detection via axio-electric effect

I.ABC

3. ⁵⁷Fe

M. Lindner, MPIK

17

→ Ways around?

See e.g.: XENON1T excess from anomaly-free Axion-like Dark Matter and its implications for Stellar Cooling Anomaly, F. Takahashi, M. Yamada, W. Yin, PRL 125 (2020) 16, 161801

WD and RG explained simultaneously better when ALP constitutes about 10% of DM

Large Neutrino magnetic Moment

Solar neutrino spectrum → MeV-ish

Detection

Phys. Rev. D 102, 072004

<u>Reconstruction in XENON1T</u> <u>(resolution, efficiency,</u>

μ_{v} in the Standard Model + v_{R}

Dirac:
$$\mathcal{L} \supset \mu_{\nu} \overline{\nu}_{L} \sigma_{\mu\nu} \nu_{R} F^{\mu\nu} + m_{\nu} \overline{\nu}_{L} \nu_{R} + \text{H.c.}$$

 μ_{ν} and ν mass operators have the same chiral structure $\rightarrow \mu_{\nu}$ typically proportional to m_{ν}

SM+
$$v_{\rm R}$$
:
 $\mu_{\nu} = \frac{eG_F m_{\nu}}{8\sqrt{2}\pi^2} = 3 \times 10^{-20} \mu_B \left(\frac{m_{\nu}}{0.1 \text{ eV}}\right)$

Transition mag. moment for Majorana v's:

$$\mu_{ij} = -\frac{3eG_F}{32\sqrt{2}\pi^2} (m_i \pm m_j) \sum_{\ell=e,\mu,\tau} U_{\ell i}^* U_{\ell j} \frac{m_{\ell}^2}{m_W^2} \twoheadrightarrow \mathbf{O}(10^{-23}) \ \mu_B$$

→ all orders of magnitude too small!

BSM models significantly enhance μ_{ν} e.g. MSSM with L violation by R-parity violation ~ λ '

$$\mu_{\nu} \sim \lambda'^2/(16\pi^2) m_{\ell}^2 A_{\ell}/M_{\tilde{\ell}}^4$$

BUT $\Rightarrow \mu_{\nu} \leq 10^{-13} \mu_{B}$

 $A_{l} \leftrightarrow \textbf{SUSY breaking}$ trilinear coupling $M_{\tilde{\ell}} \leftrightarrow \textbf{slepton mass}$

Rather general: Most BSM models with TeV-ish scales allow/predict $\mu_v \leq 10^{-13} \mu_B$

Pushing higher often leads to two problems:

- light new particles that should have been discovered

- intrinsic relation between magnetic moment and radiative neutrino masses

→ neutrino mass shifts which are much bigger than allowed

However: Symmetries can decouple μ and neutrino masses See e.g.: ML, B. Radovčić, J. Welter, JHEP 07 (2017) 139 symmetries for ν mass patterns \rightarrow non-trivial $m_{\nu} \leftarrow \rightarrow \mu_{\nu}$ relation

K.S. Babu, S. Jana, ML, JHEP 10 (2020) 040 \rightarrow see talk by S. Jana Horizontal SU(2)_H broken by muon Yukawa coupling

$$\mathcal{L}_{\text{mag.}} = (\nu_e^T \quad \nu_\mu^T) C^{-1} \sigma_{\mu\nu} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} F^{\mu\nu} \longleftrightarrow \mathcal{L}_{\text{mass}} = (\nu_e^T \quad \nu_\mu^T) C^{-1} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix}$$

 $\mathcal{L}_{\text{mass}}$ is not invariant $\Rightarrow \mathbf{m}_{v} = \mathbf{0}$ in the SU(2)_H limit while μ_{v} is allowed + corrections \Rightarrow elegantly generates the correct v mass scale

Bosonic Dark Matter

E.g. axion-like pareticles (ALPs) – not related to strong CP problem, but interesting \rightarrow avoids strict mass-coupling relation \rightarrow more freedom

$$R \simeq \frac{1.5 \times 10^{19}}{A} g_{\rm ae}^2 \left(\frac{m_{\rm a}}{{\rm keV}/c^2}\right) \left(\frac{\sigma_{\rm pe}}{{\rm b}}\right) {\rm kg}^{-1} {\rm d}^{-1}$$

→ Expect a monoenergetic peak around the rest mass

Many Solutions: Hidden Dark Sectors

Receipe: Dark sector + light particles + weak coupling

A few examples:

- Light new physics in XENON1T
- C. Bœhm, D. Cerdeno, M. Fairbairn, P. Machado, A. Vincent, arXiv:2006.11250
- Light vector mediators facing XENON1T data
 D. Aristizabal Sierra, V. De Romeri, L.J. Flores, D.K. Papoulias, PLB 809 (2020) 135681
- Shining dark matter in Xenon1T
 - G. Paz, A. Petrov, M. Tammaro, J. Zupan, arXiv: e-Print:2006.12462
- Mirror Dark Matter and Electronic Recoil Events in XENON1T L. Zu, G.W. Yuan, L. Feng, Y.Z. Fan, arXive:2006.14577
- XENON1T Anomaly: A Light Z'
 - ML, Y. Mambrini, T. de Meloc, F.S. Queiroz, arXiv:2006.14590
- Boosted Dark Matter Interpretation of the XENON1T Excess
- B. Fornal, P. Sandick, J. Shu, M. Su, Y. Zhao, Phys.Rev.Lett. 125 (2020) 16, 161804
- + many more

Light Dark Sectors $\leftarrow \rightarrow E_R$ Spectrum

D. Sierra, V. De Romeri, L. Flores, D. Papoulias, arXiv:2006.12457 Also:

C. Boehm, D. Cerdeno, M. Fairbairn, P. A. Machado, A. Vincent, ArXiv:2006.11250 A. Bally, S. Jana, A. Trautner, PRL 125 (2020) 16, 161802

→ new neutrino interactions with leptons mediated by a light vector particle

Iσ allowed , 2σ excluded regions in the m_v - g_v plane

DM with a fast Component

K Kannike, M. Raidal, H. Veermae, A. Strumia, arXiv:2006.10735

elastic DM+e \rightarrow DM+e' scattering DM with initial velocity: \vec{v}_{DM} initial/final e velocity: $\vec{v}_e \rightarrow \vec{v'}_e$ \rightarrow Momentum transfer:

$$q \equiv m_{\rm DM}(v'_{\rm DM} - v_{\rm DM}) = -2\mu v_{\rm rel}$$
$$\simeq -\begin{cases} 2m_{\rm DM}(v_{\rm DM} - v_e) & \text{for } m_{\rm DM} \ll m_e \\ 2m_e(v_{\rm DM} - v_e) & \text{for } m_{\rm DM} \gg m_e \end{cases}$$

→ $E_R \approx 2.4 \text{keV}$ for $m_{DM} \gg m_e$ with $v_{DM} \approx 0.1$

Favoured region

Sun heated MeV-Scale Dark Matter

Y. Chen, M.Y. Cui, J. Shu, X. Xue, G.W. Yuan, Q. Yuan, arXiv:2006.12447

Explain signal by the MeV-scale dark matter heated inside the Sun ($\approx 1.5 \text{ x } 10^7 \text{ K}$)

Boosted Dark Matter

B. Fornal, P. Sandick, J. Shu, M. Su, Y. Zhao, PRL 125 (2020) 16
BDM: particles with velocities ≫ typical of virialized dark matter
→ naturally produce keV electron recoils

required BDM-electron scattering cross sections can be easily realized in simple models, e.g. with a heavy vector mediator

- BDM flux → could originate from the Galactic Center or from halo DM annihilation
- daily modulation of the BDM signal expected for mediator masses < 10-100 GeV

$$L_{fs,E} \simeq 60 \,\mathrm{m} \times \left(\frac{10^{-28} \,\mathrm{cm}^2}{\sigma_{\mathrm{elec}}}\right)$$

More Directions

- non-relativistic particles gravitationally bound to the Milky Way
- DM particles "store" energy, which they release in the detector
- Exothermic DM (X* + e- → strong signal preference X + e-) Baryakhtar et al., arXiv:2006.13918
- Luminous DM (X* \rightarrow strong signal preference X + γ) Bell et al., arXiv:2006.12461

This would require a slightly heavier state

→ populated either in the early Universe or via up-scattering Aboubrahim et al., arXiv:2011.08053, Eby et al., arXiv:1904.09994

- millicharged neutrinos

Kahn, arXiv:2006.12887, ...

Summary of the current Situation

Excess between 1-7 keV:

285 events observed (232 \pm 15) expected from best-fit

Interpretations :

- a) A fluctuation
- b) Some new background
 - Tritium
 - ³⁷ Ar

c) New physics

- solar axions
- large v mag. Moment
- bosonic DM, dark Z, ...
 >100 papers in 2 months

XENON1T → XENONnT

Changes, re-assembly, filling, commissioning done last year! \rightarrow data taking \rightarrow SR0 results... soon... \rightarrow more data & checking

Conclusions

- The WIMP search will continue - XENONnT...
- Direct detection will make good progress soon (XENONnT, LZ, ...)
 - even better WIMP sensitivity
 - sensitivity to axions, neutrino physics (DEC, $0\nu\beta\beta$, solar v's, SN, coherent scattering,...)
 - low E_R excess may be statistics, background or new physics
 → more pronounced with more data from XENONnT?
 → annual modulation?
 →
- Results on low E_R excess have a substantial impact
 - \rightarrow a hot signal to explain or unique limits on many ideas