Measurement of the CP violation in $B_s^0 \rightarrow J/\psi \phi$ decays in p-p collisions at $\sqrt{s} =$ 13 TeV with the ATLAS detector

Maria Smizanska on behalf of the ATLAS collaboration

Lancaster University

DISCRETE 2021, 29 Nov - 3 Dec 2021

ATLAS CP violation measurement in $B^0_s o J/\psi(\mu^+\mu^-)\phi(K^+K^-)$ Eur. Phys. J. C 81 (2021) 342

- ATLAS collected 147 fb⁻¹ of 156 fb⁻¹ of the luminosity delivered by LHC in Run2, with 136 fb⁻¹ for physics, Fig left
- Nº of interactions per crossing up to 70, with mean values between 13-38 in years Fig middle
- To benefit from high integrated luminosity ATLAS B-physics must pay attention to
 - Specialised B-triggers to maintain increasing event rates
 - Stability of tracking and vertexing performance at high pileups
 - Stability of track impact parameter resolution with increasing pileup, up to resolution tails Fig right

ATLAS trigger strategy for B-physics analysis

- $\bullet\,$ ATLAS has collected 139 $\rm fb^{-1}$ of data in Run 2, and 25 $\rm fb^{-1}$ in Run 1
- Focus mostly on final states with muons
- Typical triggers di-muons with *p*_T thresholds of either 4 GeV or 6 GeV (vary over run periods)
- Additional trigger selections are applied, e.g. on di-muon masses, targeting different analysis, as shown in Fig below

ATLAS detector

- Inner Detector: PIX, SCT and TRT, $p_{\rm T} > 0.4\, {\rm GeV}, \, |\eta| < 2.5$
 - Run2: new IBL 25% improvement of time resolution with respect to Run1
 - Time, mass resolutions remain stable within increasing pileup in Run 2
- Muon Spectrometer: triggering ($|\eta|$ < 2.4), precision tracking ($|\eta|$ < 2.7)

Motivation

- $B_s^0 \rightarrow J/\psi \phi$ is used to measure CP-violation phase ϕ_s potentially sensitive to New Physics (NP)
- In SM ϕ_s is related to the CKM elements $\phi_s \simeq 2 \arg[-(V_{ts}V_{tb}^*)/(V_{cs}V_{cb}^*)]$ and predicted with high precision
 - $\phi_s = -0.03696^{+0.00072}_{-0.00082}$ rad by CKMFitter group PhysRevD.91.073007
 - $\phi_s = -0.03700 \pm 0.00104$ rad according to UTfit Collaboration arXiv: hep-ph/0606167 [hep-ph].
- LHC combined 2021: $\phi_s = -0.050 \pm 0.019$ rad, consistent with SM, however SM precision still 20 times better room for New physics
- Other quantity related to B_s^0 mixing is $\Delta \Gamma_s = \Gamma_s^L \Gamma_s^H$, Γ_s^L and Γ_s^H are the decay widths of the mass eigenstates. $\Delta \Gamma_s$ was calculated in SM arXiv:1912.07621v2 [hep-ph] and new experimental results needed to tighten uncertainties and eventually get sensitivity to NP

ATLAS data in this analysis

- Results presented here use 80.5 fb⁻¹ of 2015-17 data, combined with 19.2 fb⁻¹ Run1
- Use $J/\psi \rightarrow \mu^+\mu^-$ triggers, with cuts on di-muon mass window. No low-limit cuts on L_{xy} , or on the impact parameter applied to avoid biasing B_s^0 proper-decay time
- Events selected for analysis contained 453 570 \pm 740 $B_s^0 \rightarrow J/\psi\phi$ signals

- $B_s^0 \rightarrow J/\psi \phi$ = pseudoscalar to vector-vector
- Final state: admixture of *CP*-odd (L = 1) and *CP*-even (L = 0, 2) states
- Distinguishable through time-dependent angular analysis
- Non-resonant S-wave decay $B_s^0 \rightarrow J/\psi K^+ K^-$ contribute to the final state
- Included in the differential decay rate due to interference with the $B_s^0 \rightarrow J/\psi(\mu^+\mu^-)\psi(K^+K^-)$ decay

Figure: Angles between final state particles in transversity basis.

Mass-lifetime-angular fit

We perform unbinned maximum likelihood fit simultaneously for B_s^0 mass, decay time and the decay angles:

$$\begin{aligned} \ln \ \mathcal{L} &= \sum_{i=1}^{N} \{ \mathbf{w}_{i} \cdot \ln(f_{s} \cdot \mathcal{F}_{s}(m_{i}, t_{i}, \sigma_{m}, \sigma_{t}, \Omega_{i}, \mathbf{P}(B|Q), \mathbf{p}_{T_{i}}) \\ &+ f_{s} \cdot f_{B_{d}^{0}} \cdot \mathcal{F}_{B_{d}^{0}}(m_{i}, t_{i}, \sigma_{m}, \sigma_{t}, \Omega_{i}, \mathbf{P}(B|Q), \mathbf{p}_{T_{i}}) \\ &+ f_{s} \cdot f_{\Lambda_{b}} \cdot \mathcal{F}_{\Lambda_{b}}(m_{i}, t_{i}, \sigma_{m}, \sigma_{t}, \Omega_{i}, \mathbf{P}(B|Q), \mathbf{p}_{T_{i}}) \\ &+ (1 - f_{s} \cdot (1 + f_{B_{d}^{0}} + f_{\Lambda_{b}})) \cdot \mathcal{F}_{bkg}(m_{i}, t_{i}, \sigma_{m}, \sigma_{t}, \Omega_{i}, \mathbf{P}(B|Q), \mathbf{p}_{T_{i}})) \end{aligned}$$

Physics parameters

- CPV phase ϕ_s
- Decay widths: $\Delta \Gamma_s$, Γ_s
- Decay amplitudes: $|A_0(0)|^2$, $|A_{\parallel}(0)|^2$, δ_{\parallel} , δ_{\perp}
- S-wave: $|A_S(0)|^2$, δ_S
- Δm_s fixed to PDG
- Assuming no direct CPV, the amplitude λ related to ϕ_s as $\phi_s = -\arg\lambda$ fixed to 1

Observables

- Basic observables : m_i , t_i , Ω_i
- Conditional observables per-candidate:
 - resolutions: σ_{m_i} , σ_{t_i}
 - tagging probability and method: P(B|Q)

Flavour tagging

- Opposite side tagging
- Use Muon or Electron
 - $b \rightarrow I$ transitions are clean tagging method
 - $b \rightarrow c \rightarrow l$ and neutral B-meson oscillations dilute the tagging
- Jet-Charge
 - information from tracks in b-tagged jet, when no lepton is found

$$ullet$$
 Calibration using ${\cal B}^\pm o J/\psi {\cal K}^\pm$ data

Inv. mass $B^\pm \to J/\psi K^\pm$. Data shown as points, overall fit result blue curve, other curves signal and background fits.

Tag method	ϵ_x [%]	D_x [%]	T_x [%]
Tight muon	4.50 ± 0.01	43.8 ± 0.2	0.862 ± 0.009
Electron	1.57 ± 0.01	41.8 ± 0.2	0.274 ± 0.004
Low- $p_{\rm T}$ muon	3.12 ± 0.01	29.9 ± 0.2	0.278 ± 0.006
Jet	12.04 ± 0.02	16.6 ± 0.1	0.334 ± 0.006
Total	21.23 ± 0.03	28.7 ± 0.1	1.75 ± 0.01

Efficiency: $\varepsilon = \frac{N_{\text{tagged}}}{N_{\text{Bcand}}}$, Dilution: D = (1 - 2w), w miss-tag probability, Tagging Power: $TP = \varepsilon D^2$

Results 2015-2017 data: Projections of the mass-lifetime-angular fit

Results 2015-2017 data: fit parameters

- While for most of the physics parameters, including ϕ_s , $\Delta\Gamma_s$, Γ_s , the fit determines a single solution, for the strong-phases δ_{\parallel} and δ_{\perp} two well separated local maxima of the likelihood are found, and shown as solution (a) and (b) in table of results
- The difference in likelihoods, -2Δ ln(L), between the two solutions is equal to 0.03, favouring (a) but without ruling out (b)

Parameter	Value	Statistical	Systematic			
		uncertainty	uncertainty			
ϕ_s [rad]	-0.081	0.041	0.022			
$\Delta\Gamma_s \ [\mathrm{ps}^{-1}]$	0.0607	0.0047	0.0043			
$\Gamma_s \ [\mathrm{ps}^{-1}]$	0.6687	0.0015	0.0022 0.0023 0.0038			
$ A_{\parallel}(0) ^2$	0.2213	0.0019				
$ A_0(0) ^2$	0.5131	0.0013				
$ A_S(0) ^2$	0.0321	0.0033	0.0046			
$\delta_{\perp} - \delta_S$ [rad]	-0.25	0.05	0.04			
Solution (a)						
δ_{\perp} [rad]	3.12	0.11	0.06			
δ_{\parallel} [rad]	3.35	0.05	0.09			
Solution (b)						
δ_{\perp} [rad]	2.91	0.11	0.06			
δ_{\parallel} [rad]	2.94	0.05	0.09			

11/24

ATLAS $B_s^0 \rightarrow J/\psi\phi$ Combination Run2 + 1. Comparison with CMS and LHCb

	Solution (a)				
Parameter	Value	Statistical	Systematic		
		uncertainty	uncertainty		
ϕ_s [rad]	-0.087	0.036	0.021		
$\Delta\Gamma_s \ [\mathrm{ps}^{-1}]$	0.0657	0.0043	0.0037		
$\Gamma_s [ps^{-1}]$	0.6703	0.0014	0.0018		
$ A_{\parallel}(0) ^2$	0.2220	0.0017	0.0021		
$ A_0(0) ^2$	0.5152	0.0012	0.0034		
$ A_{S} ^{2}$	0.0343	0.0031	0.0045		
δ_{\perp} [rad]	3.22	0.10	0.05		
δ_{\parallel} [rad]	3.36	0.05	0.09		
$\delta_{\perp} - \delta_S$ [rad]	-0.24	0.05	0.04		
ATLAS Run1, 7 and 8 TeV, 19.2 fb ⁻¹ 13 TeV, 80.5 fb ⁻¹					
0.1					
0.08					
0.06					
-0.2 0 0.2 ϕ_{a} [rad]					

- ϕ_s result consistent with results from CMS, LHCb and SM
- Competitive single measurement of $\Delta\Gamma_s$, Γ_s and helicity parameters
- Still to add 60 fb⁻¹ from 2018

- Increase > 10 x \int Ldt of LHC \rightarrow 3000-4000 fb^{-1}
- Peak luminosity 5 7.5 x 10³⁴ cm⁻² s⁻¹
- Average amount of pp interactions 140-200 per BX with a time space 25 ns
- These conditions require Detector Upgrades

High Luminosity-LHC - ATLAS track density in Inner detector

New all-silicon detector

- ITk pixel (13 m²)
 - 5 barrel, 5 EC layers (with rings)
 - Inclined sensors
 - Extends to $\eta = 4.0$ (2.5 now)
 - Innermost layer at 36 mm
 - 580 M channels (80 M now)
- ITk strips (160 m²)
 - 4 barrel layers, 6 EC rings
 - 50 M channels (6 M now)
 - Strip occupancy <1%
- Material considerably reduced

ATL-PHYS-PUB-2018-041

- ID upgrade: proper decay time resolution improved by 18% w.r.t. Run 2 and still stable at 200 collisions/BX
- Three trigger scenarios for muon momenta thresholds

ATLAS HL-LHC prospects $B_s^0 \rightarrow J/\psi\phi$

• ϕ_s precision improves (9 - 20) times w.r.t.Run1, or (4 - 9) times w.r.t. current result combining Run1 and Run2 99.7 fb⁻¹

$B_s^0 \rightarrow J/\psi\phi$: world combination 2021 and SM: CP violation

Case of CP violation phase ϕ_s

- In SM ϕ_s is related to the CKM elements $\phi_s \simeq 2 \arg[-(V_{ts}V_{tb}^*)/(V_{cs}V_{cb}^*)]$ and predicted with high precision
 - $\phi_s = -0.03696^{+0.00072}_{-0.00082}$ rad by CKMFitter group PhysRevD.91.073007
 - $\phi_s = -0.03700 \pm 0.00104$ rad according to UTfit Collaboration arXiv: hep-ph/0606167 [hep-ph].
- LHC combined 2021:
 - $\phi_{s}=-0.050\pm0.019$ rad, consistent with SM. All experiments consistent with each other and with SM
- SM precision still 20 times better there is a room for New physics
- An answer is on experimental side: Run3 LHC and HL-LHC needed to tighten experimental uncertainties

Case of $\Delta \Gamma_s$

- SM calculations:
 - $\Delta\Gamma_s=0.091\pm0.013~{
 m ps}{-1}$

Lenz et.al

- A potential NP enhancement of φ_s would also decrease ΔΓ_s, but not as significantly Lenz1
- Experiments consistent with SM within $<\!\!1.3~\sigma$
- Some tensions between CMS and ATLAS at level of 2 σ, still more Run2 data to analyse

Summary

- ATLAS analysis of $B_s^0 \rightarrow J/\psi\phi$ combining Run1 and Run2 99.7 fb⁻¹ show the CP violation phase ϕ_s compatible with SM
- ATLAS continues with including 2018 data and is ready for Run3 data taking, to increase precision on φ_s and other variables of interest: ΔΓ_s, Γ_s
- At HL-LHC with upgraded ATLAS detector the ϕ_s precision will improve by (4 9) times w.r.t. Run2
- Current World combination of ϕ_s is consistent with SM, while there is evidently room for New Physics contributions
- All LHC experiments are prepared to continue this research with Run3 and HL-LHC

Backup Slides

$B_s^0 \rightarrow J/\psi\phi$: world combination 2021: $\Delta\Gamma_s \Gamma_s$

Because of tensions between the measurements, the errors on Γ_S and $\Delta\Gamma_S$ have been scaled by 2.5 and 1.77, respectively (the ellipses representing the results of each experiment are shown before scaling, while the combined ellipses include the scale factors).

Case of $\Delta\Gamma_s$

• SM calculations:

• $\Delta \Gamma_s = 0.091 \pm 0.013 \text{ ps} - 1$ Lenz et.al

- A potential NP enhancement of φ_s would also decrease ΔΓ_s, but not as significantly Lenz1
- Experiments consistent with SM within <1.3 σ
- Some tensions between CMS and ATLAS at level of 2σ , still more Run2 data to analyse

Case of Γ_s

- Currently tensions in measurements of Γ_s, more Run2 data to analyse
- SM paper Kirk et.al 2020 do not expect NP effects
- Recent note admits that precise experimental knowledge on B-lifetimes Ratios, can provide bounds on NP models
 LenzOct2021
- ATLAS: to use full Run2 data to bring more results on lifetimes

k	$O^{(k)}(t)$	$g^{(k)}(heta_T,\psi_T,\phi_T)$
1	$\frac{1}{2} A_0(0) ^2 \left[(1+\cos\phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1-\cos\phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$
2	$\frac{1}{2} A_{ }(0) ^{2}\left[(1+\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1-\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\pm2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T(1-\sin^2\theta_T\sin^2\phi_T)$
3	$\frac{1}{2} A_{\perp}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T\sin^2\theta_T$
4	$\frac{1}{2} A_0(0) A_{ }(0) \cos\delta_{ }$	$\frac{1}{\sqrt{2}}\sin 2\psi_T \sin^2 \theta_T \sin 2\phi_T$
	$\left[\left(1 + \cos\phi_s\right) e^{-\Gamma_{\mathrm{L}}^{(s)}t} + \left(1 - \cos\phi_s\right) e^{-\Gamma_{\mathrm{H}}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	
5	$ A_{\parallel}(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\cos(\delta_{\perp} - \delta_{\parallel})\sin\phi_{s}$	$-\sin^2\psi_T\sin2\theta_T\sin\phi_T$
	$\pm e^{-\Gamma_s t} (\sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m_s t) - \cos(\delta_{\perp} - \delta_{\parallel}) \cos\phi_s \sin(\Delta m_s t))]$	
6	$ A_0(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\cos\delta_{\perp}\sin\phi_s$	$\frac{1}{\sqrt{2}}\sin 2\psi_T \sin 2\theta_T \cos \phi_T$
	$\pm e^{-\Gamma_s t} (\sin \delta_{\perp} \cos(\Delta m_s t) - \cos \delta_{\perp} \cos \phi_s \sin(\Delta m_s t))]$	
7	$\frac{1}{2} A_{S}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\frac{2}{3}\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
8	$\alpha A_S(0) A_{\parallel}(0) [\frac{1}{2} (e^{-\Gamma_{\mathrm{L}}^{(s)}t} - e^{-\Gamma_{\mathrm{H}}^{(s)}t}) \sin(\delta_{\parallel} - \delta_S) \sin\phi_s$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin 2\phi_T$
	$\pm e^{-\widetilde{\Gamma}_s t} (\cos(\delta_{\parallel} - \delta_S) \cos(\Delta m_s t) - \sin(\delta_{\parallel} - \delta_S) \cos\phi_s \sin(\Delta m_s t))]$	P.
9	$\frac{1}{2}\alpha A_{S}(0) A_{\perp}(0) \sin(\delta_{\perp}-\delta_{S})$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin 2\theta_T\cos\phi_T$
	$\left[(1 - \cos\phi_s) e^{-\Gamma_{\mathrm{L}}^{(s)}t} + (1 + \cos\phi_s) e^{-\Gamma_{\mathrm{H}}^{(s)}t} \mp 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	
10	$\alpha A_0(0) A_S(0) [\frac{1}{2} (e^{-\Gamma_{\rm H}^{(s)}t} - e^{-\Gamma_{\rm L}^{(s)}t}) \sin \delta_S \sin \phi_s$	$\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
	$\pm e^{-\Gamma_s t} (\cos \delta_S \cos(\Delta m_s t) + \sin \delta_S \cos \phi_s \sin(\Delta m_s t))]$	

- Data are corrected by the decay time correction
- Mass as well as lifetime use per-candidate width and scale factor, with flavour-dependent terms weighted by tagging probability P(B|Q)
- Contributions from $B^0_d \to J/\psi K^{*0}$, $B^0_d \to J/\psi K\pi$ and $\Lambda^0_b \to J/\psi Kp$ due to wrong mass assignment (KK)
 - Efficiencies and acceptance from MC
 - BR from PDG
 - Fragmentation fractions from other measurements
- Combinatorial background for angular distribution use Legendre polynomials from sidebands; fixed in the main fit

- Systematics assumed uncorrelated \rightarrow Total = $\sqrt{\sum_i syst_i^2}$
- Tagging systematics dominant for ϕ_s
 - Accounting for pile-up dependence, calibration curves model and MC precision, "Punzi" PDFs variations, difference between B^{\pm} and B_s^0 kinematics
- Fit-model time resolution systematics dominant for Γ_s and $\Delta\Gamma_s$

	ϕ_s	$\Delta \Gamma_s$	Γ_s	$ A_{ }(0) ^2$	$ A_0(0) ^2$	$ A_{S}(0) ^{2}$	δ_{\perp}	δ_{\parallel}	$\delta_{\perp} - \delta_S$
	[rad]	$[ps^{-1}]$	[ps ⁻¹]				[rad]	[rad]	[rad]
Tagging	1.7×10^{-2}	0.4×10^{-3}	0.3×10^{-3}	0.2×10^{-3}	0.2×10^{-3}	2.3×10^{-3}	1.9×10^{-2}	2.2×10^{-2}	2.2×10^{-3}
Acceptance	0.7×10^{-3}	$< 10^{-4}$	$< 10^{-4}$	0.8×10^{-3}	0.7×10^{-3}	2.4×10^{-3}	3.3×10^{-2}	1.4×10^{-2}	2.6×10^{-3}
ID alignment	0.7×10^{-3}	0.1×10^{-3}	0.5×10^{-3}	$< 10^{-4}$	$< 10^{-4}$	$< 10^{-4}$	1.0×10^{-2}	7.2×10^{-3}	$< 10^{-4}$
S-wave phase	0.2×10^{-3}	$< 10^{-4}$	$< 10^{-4}$	0.3×10^{-3}	$< 10^{-4}$	0.3×10^{-3}	1.1×10^{-2}	2.1×10^{-2}	8.3×10^{-3}
Background angles model:									
Choice of fit function	1.8×10^{-3}	0.8×10^{-3}	$< 10^{-4}$	1.4×10^{-3}	0.7×10^{-3}	0.2×10^{-3}	8.5×10^{-2}	1.9×10^{-1}	1.8×10^{-3}
Choice of p_T bins	1.3×10^{-3}	0.5×10^{-3}	$< 10^{-4}$	0.4×10^{-3}	0.5×10^{-3}	1.2×10^{-3}	1.5×10^{-3}	7.2×10^{-3}	1.0×10^{-3}
Choice of mass interval	0.4×10^{-3}	0.1×10^{-3}	0.1×10^{-3}	0.3×10^{-3}	0.3×10^{-3}	1.3×10^{-3}	4.4×10^{-3}	7.4×10^{-3}	2.3×10^{-3}
Dedicated backgrounds:									
B_d^0	2.3×10^{-3}	1.1×10^{-3}	$< 10^{-4}$	0.2×10^{-3}	3.1×10^{-3}	1.4×10^{-3}	1.0×10^{-2}	2.3×10^{-2}	2.1×10^{-3}
Λ_b	1.6×10^{-3}	0.4×10^{-3}	0.2×10^{-3}	0.5×10^{-3}	1.2×10^{-3}	1.8×10^{-3}	1.4×10^{-2}	2.9×10^{-2}	0.8×10^{-3}
Fit model:									
Time res. sig frac	1.4×10^{-3}	1.1×10^{-3}	$< 10^{-4}$	0.5×10^{-3}	0.6×10^{-3}	0.6×10^{-3}	1.2×10^{-2}	3.0×10^{-2}	0.4×10^{-3}
Time res. p_T bins	$3.3 imes 10^{-3}$	1.4×10^{-3}	$0.1\times\!\!10^{-2}$	$< 10^{-4}$	$< 10^{-4}$	$0.5 imes 10^{-3}$	$6.2 imes 10^{-3}$	$5.2 imes 10^{-3}$	1.1×10^{-3}
Total	1.8×10^{-2}	0.2×10^{-2}	0.1×10^{-2}	0.2×10^{-2}	0.4×10^{-2}	0.4×10^{-2}	9.7×10^{-2}	2.0×10^{-1}	0.1×10^{-1}