Searching for new symmetries in the Higgs sector at ATLAS Detector

2021 Discrete Symmetry

Y.Y. Fan (IHEP)
On behalf of the ATLAS collaboration

Beyond the standard model

Standard Model (SM):

One Higgs doublet field, only one neutral Higgs boson

SM needs to be extended:

v mass, dark matter...

Many Beyond the Standard Model (BSM) theories predicts:

- ✓ exotic decays of Higgs boson: exiting precision measurements of the Higgs allow a branching ration of ~30% to exotic decays
- ✓ additional Higgs: Two Higgs Doublet Model (2HDM) + S (singlet)

Higgs exotic decays into light scalar particles

scalar (H), **pseudoscalar (a), heavy scalar**, two charged.

Outline

New results with full data set (139 fb⁻¹) collected by the ATLAS experiment in Run2 from 13 TeV pp collisions

I. $H_{125} \rightarrow \text{new light scalar particles(BSM)}$

$$H \rightarrow aa/Za/Z_dZ_d \rightarrow 41$$

 $H \rightarrow aa \rightarrow bbμμ$

II. Additional low- and high-mass Higgs bosons

$$H \rightarrow ZZ \rightarrow IIII$$
 and $IIvv$
 $H \rightarrow \gamma \gamma$
 $H \rightarrow V+\gamma$

I. $H_{125} \rightarrow \text{new light scalar particles(BSM)}$

 $H \rightarrow aa/Za/Z_dZ_d \rightarrow 41$

H → aa → bbμμ

$H \rightarrow aa /Za /Z_dZ_d \rightarrow 4I$

Search for Higgs bosons decaying to new spin-0 or spin-1 particles in four-lepton final states at the ATLAS detector with 139 fb⁻¹ of p p collision data at \sqrt{s} = 13 TeV

Backgrounds: simulation.

- $ZZ^* \rightarrow 4\mu$: simulation
- H \rightarrow ZZ* \rightarrow 4 μ : simulation
- Non-prompt leptons from heavy flavour hadrons: data-driven method
 Statistics limited.

$H \rightarrow aa /Za /Z_dZ_d \rightarrow 4l$: Limits

- Limits on $\sigma(H \rightarrow aa/Za \rightarrow 41)$
- Factor 2-4 improvement from previous results.
- ✓ Larger data sample
- ✓ improved lepton reconstruction and identification
- ✓ Better optimized event selection

 $H \rightarrow Za \rightarrow 2l2 \mu$

m_a [GeV]

$H \rightarrow aa /Za /Z_dZ_d \rightarrow 4l$: Limits

- Used $H \rightarrow Z_d Z_d$ set upper limit on Higgs mixing parameter
- Used $H \rightarrow Z Z_d$ set upper limit on Z_d mixing parameter ϵ

Δ 0.09

ATLAS

Vs = 13 TeV, 139 fb⁻¹

— Observed
— Expected ±1 σ
Expected ±2 σ

— Expected ±2 σ

— O.04

— O.05

— Marketic mixing and several seve

Higgs mixing parameter: κ

 $Z_{\rm d}$ mixing parameter ϵ

Search for Higgs boson decays into a pair of pseudoscalar particles in the bbµµ final state with the ATLAS detector in pp collisions at \sqrt{s} =13 TeV

SM Backgrounds

- DY (Drell-Yan) dimuon + jets:
 - bbµµ mass side bands control region.
 - Distribution shapes are from data templates with 0 b-jets
- ttbar:

High-MET control region

Distribution shapes are from simulation.

• Other (diboson, single-top-quark etc.):

Simulation

$H \rightarrow aa \rightarrow bb\mu\mu$: Results

- Overall data are compatible with the SM background
- The largest data excess at 52 GeV is local 3.3 σ (global 1.7 σ)
- **✓** Dominant systematic uncertainties.
 - DY background: BDT selection and normalization
- Signal : b-tagging and jet energy related uncertainties
- ✓ Upper Limits on B(H → aa → bbµµ) range $(0.2-4.0) \times 10^{-4}$
 - Factor 2 5 improvement from the previous analysis.
 - Larger data set (factor ~2).
 - Use of BDT (factor ~2).

II. Additional low- and high-mass Higgs bosons

$$H \rightarrow ZZ \rightarrow IIII$$
 and $IIvv$

$$H \rightarrow \gamma \gamma$$

$$H \rightarrow V + \gamma$$

Search for heavy resonances decaying into a pair of Z bosons in the llll and llvv final states using 139 fb⁻¹ at 13 TeV.

Many channels:

- Productions: gluon-gluon fusion and vector-boson-fusion
 - Decays: Illl and Ilvv
- Width assumptions: narrow-width approximation and large-width assumption(only for the ggF channel)

- Spins: 0 (two-Higgs-doublet model)
- Spins 2 (Randall–Sundrum).

Mass range: 200-2000 GeV. Discriminating variable:

- llll: m4l (four-lepton invariant mass).
 - 11vv:

$$m_{\mathrm{T}} \equiv \sqrt{\left[\sqrt{m_{Z}^{2} + \left(p_{\mathrm{T}}^{\ell\ell}\right)^{2}} + \sqrt{m_{Z}^{2} + \left(E_{\mathrm{T}}^{\mathrm{miss}}\right)^{2}}\,\right]^{2} - \left|\vec{p_{\mathrm{T}}}^{\ell\ell} + \vec{E}_{\mathrm{T}}^{\mathrm{miss}}\right|^{2}}.$$

H → ZZ: Background estimation

Background estimation:

- Minor backgrounds simulated from MC
- Major backgrounds shape from MC and normalization from data
- Illl: dominant non resonant ZZ -using functional form

2HDM

RS(Randall–Sundrum)

$H \rightarrow ZZ$

Upper limits are set at the 95% CL:

- NWA improvement of up to ~40% wrt previous results
 - 200–2.6 fb for ggF.
 - 87–1.9 fb for VBF.

Search for heavy resonances decaying into photon pairs using 139 fb-1 at 13 TeV.

Motivation:

- Spin 0 extended Higgs sector.
- Spin 2 warped extra-dimension model.
- Require at least two photons with $E_T > 35(25)$ GeV and additional $E_T/m_{\gamma\gamma} > 0.3$ (0.25) for leading (subleading) γ .
- Search range: $m_{\gamma\gamma} > 150$ GeV
- Signal model:

Breit-Wigner

True lineshape width

Variety of width hypotheses $\Gamma/m_x = [1,10\%]$ $k/\overline{M}_{p1} = [0.01,0.1]$

$H \rightarrow \gamma \gamma$

Background estimation:

- Irreducible $(\gamma \gamma)$ from MC.
- Reducible (γj,jγ,jj) from data driven methods.
- Mixed according to data-driven purities.
- Fluctuations suppressed using the functional decomposition method.

Up to 25% gain on the limit wrt using the default MC.

$H \rightarrow \gamma \gamma$

Upper limits on the fiducial XS*BR are set at the 95% CL:

- Spin 0: 12.5–0.03 fb.
- Spin 2: 3.2–0.04 fb.
- •Most significant excess at m_x = 684 GeV with a local (global) significance of 3.29σ (1.36σ)

Spin 0: Extended Higgs sector

Spin 2 - warped extra-dimension model

Search BSM heavy Higgs via H γ resonance

$$p+p->X->V \gamma(V=W/Z)$$

Interpretation:

spin-0
$$gg \to X^0 \to Z\gamma$$

spin-2 $gg \to X^0 \to Z\gamma$
spin-2 $q\bar{q} \to X^0 \to Z\gamma$
spin-2 $q\bar{q}' \to X^\pm \to W\gamma$

Signal selection:

- Photon: $P_T > 200 \text{GeV}, |\eta| < 1.37$
- jet with large radius : $P_T > 200 \text{GeV}, |\eta| < 2.0$

$H \rightarrow V + \gamma$

Background: dominated by γ +jet events, estimated with the analytic function

Results: No significant signal found! Set $\sigma \times B$ upper limit at m_x [1TeV,6.8TeV]

Summary

- ATLAS is searching for a new physics in various production and decay modes, under different spin assumptions.
 - Unfortunately, no significant deviation from the SM prediction has been observed.
 - Many more exciting results to come using the full Run 2 dataset.

Thank you for attention!

Backup

Reference

$pp->H_{125}->BSM$

- \blacksquare H→Z(ll)a, Z(ll)hc, Z(ll)J/y, Run 2, \sqrt{s} =13 TeV, L=139 fb-1, PRL 125, 221802 (2020), submitted Apr., published Nov. 2020
- \blacksquare H \rightarrow aa \rightarrow bbµµ, Run 2, \sqrt{s} =13 TeV, L=139 fb-1, CERN-EP-2021-157, submitted Oct. 2021 to PRD
- H→aa→bbbb, Run 2, √s=13 TeV, L=36 fb-1, PRD 102, 112006 (2020), submitted May 2020, published Dec. 2020
- □ $Z(ll)H\rightarrow inv$, 2HDM+a, $Run\ 2$, $\sqrt{s}=13\ TeV$, $L=139\ fb-1$, ATLAS-CONF-2021-029, released July 2021 Dark matter combination, $Run\ 2$, $\sqrt{s}=13\ TeV$, $L=139\ fb-1$, ATLAS-CONF-2021-036, released July 2021
- NMSSM, $Z(ll)H(\chi \otimes 2\ 0\chi \otimes 1\ 0 \rightarrow a\ \chi \otimes 1\ 0\chi \otimes 1\ 0)$, Run 2, \sqrt{s} =13 TeV, L=139 fb-1 , CERN-EP-2021-098, submitted Sept. 2021 to JHEP
- \blacksquare H \rightarrow XX \rightarrow 4l, H \rightarrow ZX \rightarrow 4l, Run 2, \sqrt{s} =13 TeV, L=139 fb-1, ATLAS-CONF-2021-034, released August 2021
- ☐ H→WW, Run 2, √s=13 TeV, L=36.1 fb-1, CERN-EP-2021-096, submitted Sept. 2021 to EPJC

Charged Higgs

- H±→cb, Run 2, √s=13 TeV, L=139 fb-1, ATLAS-CONF-2021-037, released Aug. 2021
- H±→tb, Run 2, √s=13 TeV, L=139 fb-1, JHEP 06, 145 (2021), submitted Feb., published June 202
- H±→W±A→W± (en)µµ, Run 2, \sqrt{s} =13 TeV, L=139 fb-1 , ATLAS-CONF-2021-047, released September 2021
 - H±±, Run 2, √s=13 TeV, L=139 fb-1, JHEP 06, 146 (2021), submitted Jan., published June 2021

low- and high-mass Higgs bosons

•Search for high-mass W_YW_Y and Z_YZ_Y resonances in the hadronic final state using 139 fb-1–1 of pp collisions at sVs= 13 TeV with the ATLAS Detector A search for high-mass charged and neutral bosons decaying to W_YW_Y and Z_YZ_Y final states is presented in this note. [...] ATLAS-CONF-2021-041. - 2021. - 29 p.

ATLAS Collaboration, Search for Heavy Higgs Bosons Decaying into Two Tau Leptons with the ATLAS Detector Using pp Collisions at $\sqrt{s} = 13$ TeV, Phys. Rev. Lett. 125 (2020) 051801, arXiv: 2002.12223 [hep-ex] (cit. on p. 2).

ATLAS Collaboration, Search for heavy neutral Higgs bosons produced in association with -quarks and decaying into 푏-quarks at $\sqrt{\Xi}$ = 13 TeV with the ATLAS detector, Phys. Rev. D 102 (2020) 032004, arXiv: 1907.02749 [hep-ex] (cit. on p. 2)

A. Djouadi, J. Kalinowski and M. Spira, HDECAY: A Program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56, arXiv: hep-ph/9704448 (cit. on pp. 3–6).