

Search for K⁺ decays to a lepton and invisible particles

Roberta Volpe <u>roberta.volpe@cern.ch</u> Comenius University, Bratislava (SK) On behalf of the NA62 Collaboration

DISCRETE 2021 Bergen, Norway, 30 November 2021

Outline

N: Heavy Neutral Lepton φ: new scalar or vector

DISCRETE 2020-2021

2

Heavy neutral leptons

Massive sterile neutrinos generated with low scale seesaw mechanism

vMSM Neutrino Minimal Standard Model T. Asaka, M. Shaposhnikov, Phys. Lett. B 620 (2005) 17.

<u>3 right handed neutrinos</u>

Considering the constraint from Neutrinos oscillation, Dark matter amount, Baryon Asymmetry of the Universe (BAU):

Lightest $O(keV) \rightarrow$ Dark Matter candidate,

the other two O(10 MeV – GeV)

$$-> e/\mu^+ N$$

HNL decaying to SM particles only after ~10 Km

The signature is one single track

NA62 Collaboration

~ 300 participants

Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna (JINR), Fairfax (GMU), Ferrara, Florence, Frascati, Glasgow, Lancaster, Liverpool, Louvain-la-Neuve, Mainz, Moscow (INR), Naples, Perugia, Pisa, Prague, Protvino (IHEP), Rome I, Rome II, San Luis Potosi, TRIUMF, Turin, Vancouver (UBC)

The main aim is the measurement of with a precision better than 10%

Features required for the BR(K⁺ $\rightarrow \pi^+ \nu \nu$)

- very good kinematic reconstruction
- time measurements

Decay	BR	Main Rejection Tools	
$K^+ \to \mu^+ \nu_\mu(\gamma)$	63%	μ -ID + kinematics	
$K^+ \to \pi^+ \pi^0(\gamma)$	21%	γ -veto + kinematics	Toma a second
$K^+ \to \pi^+ \pi^+ \pi^-$	6%	multi-track + kinematics	
$K^+ \to \pi^+ \pi^0 \pi^0$	2%	γ -veto + kinematics	
$K^+ \to \pi^0 e^+ \nu_e$	5%	e -ID + γ -veto	
$K^+ \to \pi^0 \mu^+ \nu_\mu$	3%	μ -ID + γ -veto	

Talk by M. Zamkovsky https://indico.cern.ch/event/ 868021/contributions/4520768/

Κ,π,μ	identification

- Hermetic detection of muons
- Hermetic detection of photons

Features useful also for the "lepton+invisible" searches

NA62 apparatus: the p and K beam

JINST 12 P05025 (2017), arxiv:1703.08501

A 52 NA62 apparatus: kaon decays reconstruction

JINST 12 P05025 (2017), arxiv:1703.08501

tracks reconstructed by the STRAW

Downstream tracking:

Dipole spectrometer 4 straw-tracker stations

 $\sigma(p)/p = 0.3\%$

Charged particle

NA62 apparatus: photon veto system

Hermetic photon veto system (LAV,SAV,LKr)

Multiplicity rejection (LAV,SAV,LKr, CHOD,STRAW)

Large Angle Veto (LAV)

12 stations (lead glass blocks) Covering angles $8.5 < \theta < 50$ mrad

 $\pi v v$ background rejection: $K^+ \rightarrow \pi^+ \pi^0$

$$\mathbf{v} \in (\pi^0) = 3 \ 10^{-8}$$

roberta.volpe@cern.ch

JINST 12 P05025 (2017), arxiv:1703.08501

CHOD Charged Hodoscope, plastic scintillator

LKr calorimeter Photon detection

Covering angles $1 < \theta < 8.5 \text{ mrad}$

Small Angle Veto (SAV)

- IRC: Inner Ring Calorimeter
- Small Angle Calorimeter, Covering angles <1 mrad

NA62 apparatus: particle identification

INST 12 P05025 (2017), arxiv:1703.08501

<u>Muon veto system</u>

Hadronic calorimeters for

Data taking timeline

Much broader physics program eg at DISCRETE 2020-2021:

LNV, LFV searches: S. Kholodenko https://indico.cern.ch/event/868021/contributions/4520326/

<u>Radiative decays</u>: C. Biino <u>https://indico.cern.ch/event/868021/contributions/4621051/</u>

NA62 Data Taking

- **2015** Commissioning run
- **☑** 2016 Commissioning + Physics run (45 days)
- ☑ 2017 Physics run (160 days)
- **2018** Physics run (217 days)
- □ New Physics run started this summer (2021 run just ended for the winter break) Till the next LHC Long Shutdown

results on K-> $\pi v v$ and K-> πX_{inv} : [PLB 791 (2019) 156] [JHEP 11 (2020) 042] [JHEP 06 (2021) 093] M. Zamkovsky https://indico.cern.ch/event/868021/contributions/4520768/

K+—>/+ N: Analysis strategy

roberta.volpe@cern.ch

Discriminant variable:

SM and HNL common event selection:

- Single positive track
- Muon and positron identification with:
 - E/p
 - Muon Veto
 - RICH
- Photon vetoes

11

$K^+ \rightarrow e^+ N$

Phys. Lett. B 807 (2020) 135599

$K^+ \rightarrow e^+ N$

For each HNL mass hypothesis (m_N) :

- m^{2}_{miss} in 1.5 σ
- Background evaluated from sidebands in m²_{miss} distributions
- MC used only to check that no structures are present in the signal region

Auxiliary selection:

p(e) < 20 GeV/c in order to get smoother background near the $\pi^+ \rightarrow e^+ \nu$ threshold. Used for m_N~[356,382] MeV

$K^+ \rightarrow e^+ N$

Phys. Lett. B 807 (2020) 135599

14

$K^+ \rightarrow \mu^+ N$

▶2016-2018 data

- downscaled trigger
- ▶ 1 track with p in [5-30] GeV
- ▶ PID: E/p, RICH and MUV3
- ▶ KTAG signal
- STRAW-GTK matching
- Vetoes for photons and multitrack events

$$N_{K} = \frac{N_{SM}}{A_{SM} \cdot \mathcal{B}(K^{+} \rightarrow \mu^{+}\nu)}$$
$$= (1.14 \pm 0.02) \times 10^{10}$$

SM region

Phys. Lett. B 816 (2021) 136259

Assumption: the non-Gaussian tails of the m²_{miss} spectrum are left-right symmetrical.

A "tail" component is added to the estimated background in each m_{miss}^2 bin in the region $m_{miss}^2 > 0$ equal to the difference between the data and simulated spectra in the symmetric mass bin with respect to $m^{2}_{miss} = 0$.

A 100% uncertainty is conservatively assigned to this component to account for the above assumption.

$K^+ \rightarrow \mu^+ N$

For each HNL mass hypothesis (m_N):

- m^2_{miss} in 1.5 σ
- Background evaluated from sidebands in m^{2}_{miss} distributions
- MC used only to check that no structures are present in the signal region

Phys. Lett. B 816 (2021) 136259

16

Summary of HNL searches

Muon mode

reached BNL-E949 sensitivity and extended the HNL mass range to 384 MeV

Positron mode

Improved of ~ O(100) over the 2015 result

Dashed lines: BBN constraint From Nuclear Physics B 590 (2000)

$K^+ \rightarrow \mu^+ \nu X, X \rightarrow invisible$

A possible explanation of the **anomalous muon magnetic moment g-2** is the existence of a new light gauge boson S.N. Gninenko and N.V. Krasnikov, *Phys.Lett.B* 513 (2001) 119, <u>https://arxiv.org/pdf/hep-ph/0102222.pdf</u>

In a scenario with dark matter freeze out, it could be a scalar or vector mediator of an hidden sector decaying to Dark Matter $X \rightarrow \chi \chi$

$$K^+ \rightarrow \mu^+ v X$$
, with $X \rightarrow$ invisible, γ

Same final state as $K^+ \rightarrow \mu^+ N$, N: Heavy Neutral Lepton <u>One μ^+ and missing mass</u>

γ, μ+μ-

Work in progress

Phys. Rev. Lett. 124, 041802 (2020) <u>arXiv:1902.07715</u> [hep-ph]

roberta.volpe@cern.ch

K⁺ $\rightarrow \mu^+ \nu X$, X \rightarrow invisible

 $N_K = \frac{N_{\rm SM}}{A_{\rm SM} \cdot \mathcal{B}(K^+ \to \mu^+ \nu)} = (1.14 \pm 0.02) \times 10^{10}$

Tested mass hypotheses from 10 to 370 MeV

In the model with scalar mediator the mean value of m_{miss}^2 is larger compared to the vector mediator.

This results in a stronger upper limit for the scalar X model

Also an upper limit to the very rare SM decay has been established:

$$\mathcal{B}(K^+ \to \mu^+ \nu \nu \bar{\nu}) < 1.0 \times 10^{-6}$$
 at 90% (

Phys. Lett. B 816 (2021) 136259

Conclusions

- With the 2016-2018 data taking NA62 experiment set the world best constraints to the Heavy Neutral Leptons with mass [140,460] MeV for electron dominance and with mass [300,380] MeV for muon dominance.
- First search for a new exotic particle X in K⁺-> $\mu\nu$ X decays with mass in [10,370] MeV and best constraint to the decay K+-> μ + $\nu\nu\nu$
- ▶ NA62 has started the new data taking which will go on till the next LHC long shutdown, and will run both in kaon and in dump mode, an additional powerful way to search for new exotic particles

Thank you for your attention

